Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asteroids and meteorites reveal family resemblance

11.09.2006
Asteroids and meteorites are supposed to be made of the same stuff – at least that's what earth science teachers have been telling their students for decades. But until re-cently, the data didn't quite fit the story.

When researchers compared the near-infrared reflec-tance of asteroids (as measured from Earth) and meteorites (collected on Earth) they found enough differences to raise doubts about whether the asteroids really could be the source of Earth's meteorites.

A detailed new comparison of the near-Earth asteroid Itokawa with existing meteorite samples confirms that the process of space-weathering can explain the difference in reflectance pattern (spectrum) between asteroids and ordinary chondrites, the most common class of meteorites.

"They [chondritic meteorites] are so abundant, there have to be many, many asteroid sources, said Takahiro Hiroi, the paper's lead author, but we couldn't find any that matched so clearly, until now. These observations really let us see space weathering at work."

Over millions of years, the flow of high-energy ions and microscopic particles vaporizes the sur-face of asteroids, depositing a thin film that changes the asteroid's optical properties. Highly-weathered areas tend to appear dark and red. (The near infrared spectrum of such areas is shifted toward the red end of the spectrum.)

Takhiro Hiroi, a senior research associate at Brown University, visited several museums and col-lected dozens of samples of fresh, or newly fallen, meteorites. He rejected many samples because the oxidation caused by rain and air on the Earth's surface changes the rock's composition and interferes with the asteroid comparison. Together with other researchers from the Hayabusa mis-sion, Hiroi compared the near-infrared reflectance spectra of meteorite samples with spectra ob-served at specific locations on the asteroid.

One sample (from a meteorite dubbed Alta'ameem, for the area in Iraq where it fell) resulted in a near-identical match after correction for the changes that result from space weathering. Those changes include a reduction in mean optical path length – usually a sign of smaller grain size -- and an increase in tiny iron particles known as nano-phase metallic iron or npFe0.

Hiroi was able to see the effects of space weathering by taking spectra from one light and one dark area on the asteroid's surface. Matching the observed spectra to that of the Alta'ameem me-teorite, he estimated that the highly-weathered site contained about 0.069 percent nanophase me-tallic iron and the less-weathered site contained about 0.031 percent. Because Alta'ameem is an LL chondrite, a class that represents only 10% of ordinary chondrite meteorites, Hiroi suggests that there must be many asteroids in near Earth orbit with compositions similar to the more-common L- and H-type meteorites.

Evidence of space weathering has been seen before on moons and larger asteroids, but such clear evidence is new for smaller asteroids, such as the 550-meter Itokawa. It had been thought that such bodies, with their smaller gravitational fields, would quickly be stripped of the weathered material. This new evidence shows that space weathered material does accumulate on small as-teroids, which probably are the source of most meteorites.

Martha Downs | EurekAlert!
Further information:
http://www.brown.edu

More articles from Physics and Astronomy:

nachricht Researchers discover link between magnetic field strength and temperature
21.08.2018 | American Institute of Physics

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>