Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA Physicists Invent 'QuIET'- Single Molecule Transistors

31.08.2006
University of Arizona physicists have discovered how to turn single molecules into working transistors. It's a breakthrough needed to make the next-generation of remarkably tiny, powerful computers that nanotechnologists dream of.

They have applied for a patent on their device, called Quantum Interference Effect Transistor, nicknamed "QuIET." The American Chemical Society publication, "Nano Letters," has published the researchers' article about it online at Nano Letters. The research is planned as the cover feature in the print edition in November.

A transistor is a device that switches electrical current on and off, just like a valve turns water on and off in a garden hose. Industry now uses transistors as small as 65 nanometers. The UA physicists propose making transistors as small as a single nanometer, or one billionth of a meter.

"All transistors in current technology, and almost all proposed transistors, regulate current flow by raising and lowering an energy barrier," University of Arizona physicist Charles A. Stafford said. "Using electricity to raise and lower energy barriers has worked for a century of switches, but that approach is about to hit the wall."

Transistors can't shrink much smaller than 25 nanometers, or 1/40,000 the width of a pinhead, because scaling down further creates intractable energy problems, Stafford said. Even if it were possible to build an ultra-advanced laptop computer with molecule-sized transistors using current transistor technology, it would take a city's worth of electricity to run the laptop, and the thing would get so hot it would probably vaporize.

Stafford, UA physicist Sumit Mazumdar and David Cardamone, who received his doctorate from UA in 2005, began thinking about the problem of next-generation transistor technology three years ago. They realized that quantum mechanics can solve the problem of how to regulate current flow in a single-molecule transistor that would work at room temperature.

"Our approach is a little more finesse than brute force," Cardamone said. "We don't put up a wall to stop current. It's just that we can regulate how electron waves combine to turn the transistor on or off."

The simplest molecule they propose for a transistor is benzene, a ring-like molecule. They propose attaching two electrical leads to the ring to create two alternate paths through which current can flow.

They also propose attaching a third lead opposite one of the electrical leads. Other researchers have succeeded in attaching two contacts to a molecule this small, but attaching the third is the trick -- and the point. The third lead is what turns the device on and off, the "valve."

"In classical physics, the two currents through each arm of the ring would just add," Stafford said. "But quantum mechanically, the two electron waves interfere with each other destructively, so no current gets through. That's the 'off' state of the transistor."

The transistor is turned on by changing the phase of the waves so they don't destructively interfere with each other, opening up addiitonal paths through the third lead.

"It took a while to go from the idea of how this could work to developing realistic calculations of this kind of system," Stafford said. "We were able to do the simplest kind of quantum chemical calculations which neglect interactions between different electrons within a few weeks. But it took some time to put in all the electron interactions that demonstrate this really is a very robust device."

According to the Semiconductor Research Corp. it typically takes a dozen years for a new idea to go from initial scientific publication to commercial technological application, Stafford noted.

"That means if the computer industry is to continue its recent pace in making smaller-scale computers, we should have had this idea yesterday, " Cardamone said.

Why all this effort to make incomprehensibly small computers? Why expend so much brainpower on nanocomputing?

More computing power will result in more realistic simulations, whether you're a scientist modeling global warming or supernovae explosions, or an entertainment industry animator creating believable emotion in a simulated human face, Stafford said.

Nanocomputers could have a major impact in medicine, Cardamone said. "These machines could operate in solution, in vivo. There already are clinical trials of nanoparticles to deliver medicinal drugs. Imagine how much more powerful those little nanoparticles or nanorobots would be if they could count, or do simple computation. With our transistors packed at maximum density, you could put a microprocessor as powerful as the top-of-the-line workstation on the back of an E. coli."

"Have you seen the movie, Fantastic Voyage?" Stafford asked. A nano-sized surgical team journeyed through a human body in the 1966 sci-fi flick. That's a different story, but with a similar theme.

"We're not futurists at all and can't predict it, but imagine that you could make an artificial intelligence, that you could have this little submarine that goes inside somebody's arteries and capillaries to repair them," Stafford said.

Lori Stiles | University of Arizona
Further information:
http://www.arizona.edu

More articles from Physics and Astronomy:

nachricht MSU astronomers discovered supermassive black hole in an ultracompact dwarf galaxy
14.08.2018 | Lomonosov Moscow State University

nachricht ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres
13.08.2018 | Arizona State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>