Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotube ink: Desktop printing of carbon nanotube patterns

31.08.2006
Using an off-the-shelf inkjet printer, a team of scientists has developed a simple technique for printing patterns of carbon nanotubes on paper and plastic surfaces.

The method, which is described in the August 2006 issue of the journal Small, could lead to a new process for manufacturing a wide range of nanotube-based devices, from flexible electronics and conducting fabrics to sensors for detecting chemical agents.

Carbon nanotubes have enticed researchers since their discovery in 1991, offering an impressive combination of high strength, low weight, and excellent conductivity. But most current techniques to make nanotube-based devices require complex and expensive equipment.

"Our results suggest new alternatives for fabricating nanotube patterns by simply printing the dissolved particles on paper or plastic surfaces," said Robert Vajtai, a researcher with the Rensselaer Nanotechnology Center at Rensselaer Polytechnic Institute and corresponding author of the paper.

Vajtai and his colleagues at Rensselaer - along with a group of researchers led by Krisztián Kordás and Géza Tóth at the University of Oulu in Finland - have developed an approach that uses a commercial inkjet printer to deposit nanotubes onto various surfaces. They simply fill a conventional ink cartridge with a solution of carbon nanotubes dissolved in water, and then the printer produces a pattern just as if it was printing with normal ink. Because nanotubes are good conductors, the resulting images also are able to conduct electricity.

"Printed carbon nanotube structures could be useful in many ways," Vajtai said. "Some potential applications based on their electrical conductivity include flexible electronics for displays, antennas, and batteries that can be integrated into paper or cloth." Printing electronics on cloth could allow people to actually "wear" the battery for their laptop computer or the entire electronic system for their cell phone, according to Vajtai.

The technique could be used to print optical tags on money and other paper items that need to be tracked, and it could even lead to an electronic newspaper where the text can be switched without changing the paper, he said. The researchers printed different samples, some of which show sensitivity to the vapors of several chemicals, which also could make them useful as gas sensors.

The approach is simple, versatile, and inexpensive, which makes it superior to other methods for producing conductive surfaces, according to Vajtai. "A great advantage of our process is that the printed patterns do not require curing, which is known to be a limiting factor for conventional conductive ink applications," he said. "And since our ink is a simple water-based dispersion of nanotubes, it is environmentally friendly and easy to handle and store."

Because the process uses off-the-shelf printers, cartridges, and paper or plastic surfaces, the only real expense is the cost of the nanotubes. For this experiment, the researchers made their own multi-walled carbon nanotubes, which were then chemically modified to allow them to dissolve in water. But similar nanotubes can be purchased for as little as a tenth of the price of the more expensive single-walled variety of carbon nanotubes, Vajtai said. And the cost of nanotubes should continue to drop as commercial demand for higher volumes grows.

The researchers plan to continue optimizing the process to improve the quality of the nanotube ink and the conductivity of the printed images. At present, the paper or plastic must be run through the printer multiple times to get an electrically conductive pattern, with the conductivity increasing after each repetition. They also hope to experiment with different chemical modifications to produce a diversity of ink "colors," each producing surface patterns with different properties, Vajtai said.

Jason Gorss | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>