Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reversed growth reveals secrets of carbon nanotubes

28.08.2006
Researchers at the Advanced Technology Institute, University of Surrey have reversed the growth of carbon nanotubes from catalysts, using electron beam irradiation in an electron microscope. High resolution imaging of this reverse process led to the conclusion that carbon nanotube growth is essentially a surface-driven process.

Carbon nanotubes – tubes formed from a repeating arrangement of carbon atoms with diameter of the order of a billionth of a meter – have remarkable mechanical, electronic and optical properties. Their potential applications range from ultra-strong ropes to ultra-small transistors, as well as field-emission displays, biosensors and optical switches. Unfortunately it is not yet possible to produce carbon nanotubes on a large scale with controlled properties (such as diameter and chirality – the degree of spiral in the arrangement of the carbon atoms). One important method for producing tubes is to use small particles of a metal such as nickel, which at high temperatures catalyse the decomposition of a carbon-containing gas forming carbon nanotubes which ‘grow’ on each metal particle. This process has not yet been fully understood, but recent work at the University of Surrey sheds new light on the interaction between the catalysts and the carbon atoms involved in the growth.

“There is still a hot debate about whether carbon nanotubes grow from catalysts as a result of carbon diffusing through or on the surface of the catalyst”, said Dr Vlad Stolojan, who led the research team. “This is mainly because the result of the growth process can only be observed at room temperature, after the process is completed. Through analysing the physics behind the controlled growth reversal that we observed, we concluded that the steady-state part of the growth process is surface-driven and demonstrated that the carbon nearest to the catalyst’s surface is highly mobile”.

A carbon nanotube, with its Ni catalyst at the top, shrinks in a controlled manner under electron beam irradiation. After ~7 minutes of irradiation at 75A/cm2, ~60nm length of the carbon nanotube has been consumed and the holey carbon film supporting the tube can be seen (arrow). The measurement of the reversal rate and the high-resolution analysis of the crystalline structure reveal that the growth process of carbon nanotubes from catalysts is a surface-driven process.

Stolojan and his co-workers studied the reversal process with high spatial resolution, in a transmission electron microscope, and have shown that the catalyst remains attached to the nanotube throughout the irradiation sequence, whilst an equivalent of 1 carbon atom is consumed per every nickel atom in the catalyst. By considering the effects of heating and irradiation, they have discovered that the carbon atoms at the catalyst surface are very easily removed (also confirmed by theoretical simulations), followed by a rapid rearrangement of the nanotube’s atoms around the catalyst. They have also discovered that changes in the nanotube’s growth direction are linked to a sudden rotation of the catalyst.

The observed controlled growth reversal under the high-energy electron irradiation will allow for controlling the height of individual nanotubes within patterned arrays, thus offering three-dimensional control of nanotube arrays for field-emission applications.

“The ability to observe the behaviour of the catalyst during the growth-reversal of the nanotube is exciting, as it allows the reverse-engineering of the steady-state growth process. Ultimately, this can help establish the relationship between the catalyst’s crystalline structure and the chirality of the resulting nanotube; the control of the chirality being the true ‘holy grail’ of carbon nanotube growers.” said Prof Ravi Silva, the Director of the Advanced Technology Institute, University of Surrey from the UK.

Stuart Miller | alfa
Further information:
http://www.surrey.ac.uk

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Targeting headaches and tumors with nano-submarines

20.07.2018 | Health and Medicine

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>