Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stellar pinwheels at our Galaxy's core

22.08.2006
Mystery Quintuplets' identity crisis resolved

Astronomers have finally learned the identity of a mysterious "Quintuplet Cluster" of stars situated near the supermassive black hole at our galaxy's core: At least two of the objects are not individual stars, but binary pairs that live fast and die young, forming fiery pinwheels as they spin around one another.

A multinational team led by Peter Tuthill of the University of Sydney in Australia, used the extraordinary resolution of the 10-meter telescope at the W.M. Keck Observatory in Hawaii, to determine the nature of the enigmatic objects. They report their findings in the Aug. 18 issue of the journal Science.

Until these observations, researchers had not known whether the extremely red "cocoon" quintuplets were aging stars surrounded by shells of dust, or young stars accompanied by disks of bright gas. Neither hypothesis was convincing, and neither fully explained the enormous light output: Each quintuplet emits 10,000 to 100,000 times as much radiation as the Sun.

The new findings indicate the quintuplets are members of a rare class called "Wolf-Rayet colliding-wind binaries" -- massive, fast-burning star pairs that live only a few million years before exploding in terminal supernovae. By contrast, the Sun is about 5 billion years old and only middle-aged. The pinwheel effect is caused by the way each star's dusty mantle is affected by that of its partner, producing spiral plumes.

"The discovery of spiral plumes, the size of our entire solar system, has solved the enigma of the bright red stars in the Quintuplet Cluster located right next door (within 100 light-years) to the center of our Galaxy," says study co-author Andrea Ghez of the University of California, Los Angeles. "Within the astronomy world, there has been a surge of interest in these stars. Wolf-Rayets are very massive stars at the very end-point of their normal lives: they are the last stable phase before a supernova explosion. Massive binary systems such as these pinwheel stars will, in fact, explode three times: two explosions as each of the pair separately undergoes a core-collapse supernova, then a third explosion as the two fall into each other in an inspiral-merger event -- possibly in the quite-distant future."

Curt Suplee | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Physics and Astronomy:

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

nachricht Improving understanding of how the Solar System is formed
12.11.2018 | Goethe-Universität Frankfurt am Main

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>