Research Paper Illuminates How Light Pushes Atoms

“Unlike water, which speeds up as it passes through a small nozzle, photons of light have less momentum at the center of a focused laser beam,” says Kurt Gibble, an associate professor of physics at Penn State University and the author of the research paper. Gibble's theoretical paper analyzes the speed of an atom after it absorbs a photon of light and reveals the surprising effect that a photon in a narrow laser beam delivers less momentum to an atom than does a photon in a wide beam of light.

Einstein proposed that a light wave is made of photons that carry discrete packets of energy. “When a photon hits an atom, the atom recoils with a speed that is determined by the photon's momentum, similar to two balls colliding on a billiard table,” Gibble explains. Physicists often think of a focused laser beam as the intense intersection of two or more infinitely wide light waves, and Gibble's discovery provides an important new understanding of what happens to an atom that is pummeled by photons coming from the different directions of these multiple intersecting light waves. “You might think that an atom would absorb a photon randomly from only one of the beams, but this paper shows that the atom feels the effect of the photons from all of the beams simultaneously and, surprisingly, that it recoils with a speed that is less than it would get from the momentum of any one of the infinitely wide photons.”

Gibble's discovery has implications for the accuracy of atomic clocks, which are based on microwaves. “For a laser beam that is 1 centimeter in diameter, the sideways components of the photons act as microwave photons, which have a smaller energy and momentum than visible photons,” Gibble explains. The world's most accurate atomic clocks use microwaves. “These microwaves produce sideways forces on the atoms in exactly the same way as a narrow laser beam,” Gibble says. “With the traditional approach of treating the microwaves as being infinitely wide, you expect an error in the clock that is comparable to the current accuracy of the best atomic clocks, so this effect needed to be better understood.” Gibble's new work demonstrates that the recoil from the microwave photons produces a smaller frequency shift than previously thought, meaning that the clocks actually can be more accurate. Gibble's research also reveals an important correction for the next generation of more precise tests of fundamental physics. Some of these tests use atom interferometers to measure precisely the recoil speed of an atom, which is used to determine the fine-structure constant–a fundamental description of how matter and electromagnetic energy interact. “The important thing is that we now understand much better some of the physics that is behind atomic clocks and atom interferometers,” Gibble comments.

Support for this research was provided by the National Aeronautics and Space Administration and the Office of Naval Research.

Media Contact

Barbara K. Kennedy EurekAlert!

More Information:

http://www.psu.edu

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors