Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble images some of galaxy's dimmest stars

22.08.2006
Survey of nearby globular cluster pushes limits of orbiting observatory

Using the Hubble Space Telescope, astronomers have imaged some of the galaxy's oldest and dimmest stars, offering a rare experimental glimpse of two mysterious star types – tiny, slow burners less than one-tenth the size of our sun and once giant stars that still glow more than 10 billion years after their deaths.

The research appears in this week's issue of the journal Science.

"This project pushed the limits of what even Hubble can do," said study co-author Jay Anderson, a research scientist at Rice University. "These stars can't be reliably detected in a single image. You have to combine a large number of images to find them."

In total, the research team trained Hubble's cameras on the same patch of sky for more than 75 hours, gathering 378 overlapping images. The target was a region of space containing about 1 percent of the globular cluster NGC 6397 – a collection of stars that formed early in our galaxy's history.

"When we look at random stars in the sky they have a variety of ages," Anderson said. "Globular clusters offer unique opportunities for astronomers to study a population of stars that are all the same age. All the stars we see in clusters are ancient, because they were created when the galaxy was forming. They're fossils from the galaxy's earliest days."

There are about 150 globular clusters in our galaxy, and most contain between 100,000 and 1 million stars. While most of the galaxy's stars – including our own sun – orbit the galactic center in the plane of the galaxy, globular clusters predate the flattening of the Milky Way, so they're scattered in a more spherical distribution.

NGC 6397 is one of the nearest clusters to Earth, located just 8,500 light years away. But even at this relatively close astronomical distance, the light from NGC 6397's faintest stars is easily lost in the glare from its brightest stars.

To survey the dimmest objects, Anderson and colleagues relied on computers. Anderson, whose specialty is writing programs to sift through astronomical data, spent months writing and refining software that could examine each Hubble image, pixel by pixel, and find the faintest stars.

The two types of object imaged represent the heavy end and the light end of the stellar mass spectrum.

A star's destiny is determined by its mass. There's a minimum mass that a star must have in order to burn hydrogen, and objects below that threshold cool rapidly and fade away. From the NGC 6397 survey, Anderson and his colleagues identified the smallest visible stars yet seen in a globular cluster, stars less than one-tenth the mass of Earth's sun. This is very near the predicted theoretical threshold, and Anderson said data from the survey will be helpful for verifying and refining theories about the structure and evolution of low-mass stars.

On the other end of the stellar mass spectrum are stars that are significantly larger than the sun. Stars about eight times the mass of the sun burn quickly and die in spectacular planetary nebulae, explosions that spew much of the star's material into space. Upon their final collapse, these stars become white dwarfs, extremely dense objects that radiate heat for billions of years as they slowly fade into darkness. Anderson said that while the brightest – and therefore youngest – white dwarfs have been seen in many clusters, the new survey yielded the first images of the faintest and oldest white dwarfs in an ancient cluster. The brightness of the white dwarfs at this end of the scale can help astronomers find out how long the stars have been cooling. From that, they can better determine the age of the cluster, which in turn can be used to narrow estimates of the lower limit of the age of the universe.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Physics and Astronomy:

nachricht Researchers discover link between magnetic field strength and temperature
21.08.2018 | American Institute of Physics

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>