Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists make first ‘molecular movie’ of light

14.08.2006
Oxford University, the Lawrence Berkeley Laboratory in California, and the Massachusetts Institute of Technology have together made the first ‘molecular movie’ of the elementary interaction between light and matter, measuring what happens on a microscopic level when light travels though a medium.

The lead author of the study to be published in Nature, Dr Andrea Cavalleri at the Oxford University Department of Physics, said: ‘We’ve all seen how a stick in a pond appears to be at a different angle depending on whether we look at it from outside or inside the water. At a microscopic level, this effect depends on how stiff atomic bonds are and with how much delay atoms and electrons respond when they are placed in the rapidly wiggling electric field of light.

‘If you want to understand the propagation of light at microscopic level, especially in some the complex materials that are of interest for modern opto-electronic applications, you need to make a ‘molecular movie’ of how the atoms and electrons wiggle in the light field. To do so, you need to find a camera with an extremely quick shutter speed – that of a handful of femtoseconds (which is less than one thousandth of a billionth of a second).

‘This very fast timescale can be reached with modern laser technology – but lasers can’t see where the constituents atoms actually are. If you want to see this ‘shape’ of a molecule you need x-rays, but there are currently no x-rays beams with short enough pulses to take snapshots of atomic motions.

‘What we have managed to do is combine ultrafast laser pulses with electron beams in a particle accelerator, deflecting a small slice of the long electron pulse on a separate orbit of the accelerator. Thus, these electrons radiated short enough x-ray pulses to measure elementary atomic motions on the femtosecond timescale. This enabled us to measure the motion of charged atoms on the ultra fast timescale with an accuracy of less than one thousandth of one billionth of a meter. This means we are capable of resolving in time the displacements of atoms by less than one atomic nucleus.

‘This technology can now be applied to other elementary processes at the microscopic level, and we can measure their displacements with unprecedented speed and resolution.’

Barbara Hott | alfa
Further information:
http://www.ox.ac.uk

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>