Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists make first ‘molecular movie’ of light

14.08.2006
Oxford University, the Lawrence Berkeley Laboratory in California, and the Massachusetts Institute of Technology have together made the first ‘molecular movie’ of the elementary interaction between light and matter, measuring what happens on a microscopic level when light travels though a medium.

The lead author of the study to be published in Nature, Dr Andrea Cavalleri at the Oxford University Department of Physics, said: ‘We’ve all seen how a stick in a pond appears to be at a different angle depending on whether we look at it from outside or inside the water. At a microscopic level, this effect depends on how stiff atomic bonds are and with how much delay atoms and electrons respond when they are placed in the rapidly wiggling electric field of light.

‘If you want to understand the propagation of light at microscopic level, especially in some the complex materials that are of interest for modern opto-electronic applications, you need to make a ‘molecular movie’ of how the atoms and electrons wiggle in the light field. To do so, you need to find a camera with an extremely quick shutter speed – that of a handful of femtoseconds (which is less than one thousandth of a billionth of a second).

‘This very fast timescale can be reached with modern laser technology – but lasers can’t see where the constituents atoms actually are. If you want to see this ‘shape’ of a molecule you need x-rays, but there are currently no x-rays beams with short enough pulses to take snapshots of atomic motions.

‘What we have managed to do is combine ultrafast laser pulses with electron beams in a particle accelerator, deflecting a small slice of the long electron pulse on a separate orbit of the accelerator. Thus, these electrons radiated short enough x-ray pulses to measure elementary atomic motions on the femtosecond timescale. This enabled us to measure the motion of charged atoms on the ultra fast timescale with an accuracy of less than one thousandth of one billionth of a meter. This means we are capable of resolving in time the displacements of atoms by less than one atomic nucleus.

‘This technology can now be applied to other elementary processes at the microscopic level, and we can measure their displacements with unprecedented speed and resolution.’

Barbara Hott | alfa
Further information:
http://www.ox.ac.uk

More articles from Physics and Astronomy:

nachricht Broadband achromatic metalens focuses light regardless of polarization
21.01.2019 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Lifting the veil on the black hole at the heart of our Galaxy
21.01.2019 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bifacial Stem Cells Produce Wood and Bast

Heidelberg researchers study one of the most important growth processes on Earth

So-called bifacial stem cells are responsible for one of the most critical growth processes on Earth – the formation of wood.

Im Focus: Energizing the immune system to eat cancer

Abramson Cancer Center study identifies method of priming macrophages to boost anti-tumor response

Immune cells called macrophages are supposed to serve and protect, but cancer has found ways to put them to sleep. Now researchers at the Abramson Cancer...

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

How our cellular antennas are formed

22.01.2019 | Life Sciences

Proposed engineering method could help make buildings and bridges safer

22.01.2019 | Architecture and Construction

Bifacial Stem Cells Produce Wood and Bast

22.01.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>