Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proba-3: ESA’s first step towards formation flying

09.08.2006
Proba-3 is the third in ESA’s series of missions for validating developments in space systems while carrying an ‘added value’ user payload which can directly benefit from the innovations under test.

Proba-3 will demonstrate the technologies required for formation flying of multiple spacecraft. An instrument to observe the solar corona is being used for the ongoing design phase.

During the ESA Council at Ministerial Level held in December 2005, new activities were proposed to cover the design, development and in-flight operation of a set of small satellites for the full-scale testing and validation of formation flying missions.

Formation flying technologies will make new types of missions possible and provide a leap in the performance of future science, Earth observation and application missions.

Mastering formation flying missions requires the development of specific technologies well beyond the present state-of-the-art in fields such as metrology and spacecraft guidance, navigation, and control.

Proba-3, currently in its preparatory study phase, will comprise two independent, three-axis stabilised spacecraft flying close to one another with the ability to accurately control the attitude and separation of the two craft.

Utilising either cold-gas or electrical thrusters for agile manoeuvring, and both radio-frequency and optical (laser-based) metrology techniques for accurate position measurement and control, the combined system is expected to achieve a relative positioning accuracy of the order of 100 microns over a separation range of 25 to 250 metres.

Other Proba spacecraft

Proba spacecraft are part of ESA’s technology demonstration initiatives, funded through the General Support Technology Programme (GSTP). They are series of small, low-cost satellites that are being used to validate new spacecraft technologies, research techniques and development approaches, while also carrying scientific payloads.

The first satellite in the series, Proba-1, was launched in October 2001. Its primary payload is an imaging spectrometer for Earth observation. This instrument exploits the spacecraft’s autonomy and high-performance attitude control and pointing capabilities. Originally designed for a two-year mission, Proba-1 is now in its fifth year of operations.

Proba-2 is currently under development and due for launch in September 2007. Seventeen new technological developments will be flown on Proba-2. Eight items form part of the spacecraft infrastructure, while the other nine are being carried as passenger technologies to gain flight heritage and experience before committing them to the infrastructure of other missions. Proba-2 will carry four experiments: two for solar observations and two for space weather measurements.

Frederic Teston | alfa
Further information:
http://www.esa.int/techresources/ESTEC-Article-fullArticle_par-28_1153128123382.html

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>