Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The 'Planemo' Twins

04.08.2006
Astronomers discover double planetary mass object

The cast of exoplanets has an extraordinary new member. Using ESO's telescopes, astronomers have discovered an approximately seven-Jupiter-mass companion to an object that is itself only twice as hefty. Both objects have masses similar to those of extra-solar giant planets, but they are not in orbit around a star - instead they appear to circle each other. The existence of such a double system puts strong constraints on formation theories of free-floating planetary mass objects.

Ray Jayawardhana of the University of Toronto (Canada) and Valentin D. Ivanov of ESO report the discovery in the August 3 issue of Science Express, the rapid online publication service of the journal Science.

"This is a truly remarkable pair of twins - each having only about one percent the mass of our Sun," said Jayawardhana. "Its mere existence is a surprise, and its origin and fate a bit of a mystery."

Roughly half of all Sun-like stars come in pairs. So do about a sixth of brown dwarfs, 'failed stars' that have less than 75 Jupiter masses and are unable to sustain nuclear fusion in their cores. During the past five years, astronomers have identified a few dozen of even smaller free-floating planetary mass objects, or planemos, in nearby star forming regions. Oph 162225-240515, or Oph1622 for short, is the first planemo found to be a double.

The researchers discovered the companion candidate in an optical image taken with ESO's 3.5-m New Technology Telescope at La Silla, Chile. They decided to take optical spectra and infrared images of the pair with ESO's 8.2-m Very Large Telescope to make sure that it is a true companion, instead of a foreground or background star that happens to be in the same line of sight. These follow up observations indeed confirmed that both objects are young, at the same distance, and much too cool to be stars. This suggests the two are physically associated.

By comparing to widely used theoretical models, Jayawardhana and Ivanov estimate that the companion is about seven times the mass of Jupiter, while the more massive object comes in at about 14 times Jupiter's mass. The newborn pair, barely a million years old, is separated by about six times the distance between the Sun and Pluto, and is located in the Ophiuchus star-forming region approximately 400 light years away.

Planets are thought to form out of discs of gas and dust that surround stars, brown dwarfs, and even some free-floating planetary mass objects (see ESO 19/06). But, "it is likely that these planemo twins formed together out of a contracting gas cloud that fragmented, like a miniature stellar binary," said Jayawardhana. "We are resisting the temptation to call it a 'double planet' because this pair probably didn't form the way that planets in our Solar system did," added Ivanov.

Oph1622B is only the second or third directly imaged planetary mass companion to be confirmed spectroscopically (see ESO 23/04 [1]), and the first one around a primary that is itself a planetary mass object. What's more, its existence poses a challenge to a popular theoretical scenario, which suggests that brown dwarfs and free-floating planetary mass objects are embryos ejected from multiple proto-star systems. Since the two objects in Oph1622 are so far apart, and only weakly bound to each other by gravity, they would not have survived such a chaotic birth.

"Recent discoveries have revealed an amazing diversity of worlds out there. Still, the Oph1622 pair stands out as one of the most intriguing, if not peculiar," said Jayawardhana.

"Now we're curious to find out whether such pairs are common or rare. The answer could shed light on how free-floating planetary-mass objects form," added Ivanov.

[1]: Another serious candidate is the low-mass companion to GQ Lupi, a young T-Tauri star (see ESO PR 09/05). Models lead to a mass for this object between 1 and 42 Jupiter masses.

Henri Boffin | alfa
Further information:
http://www.eso.org/outreach/press-rel/pr-2006/pr-29-06.html

More articles from Physics and Astronomy:

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Quantum material is promising 'ion conductor' for research, new technologies

17.08.2018 | Materials Sciences

Low bandwidth? Use more colors at once

17.08.2018 | Information Technology

Protecting the power grid: Advanced plasma switch for more efficient transmission

17.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>