Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Visualising invisibility

31.07.2006
Invisibility has been an ingredient of myths, novels and films for millennia – from Perseus versus Medusa in Greek legend to James Bond’s latest car and Harry Potter’s cloak. A new study published today by the Institute of Physics reveals that invisibility is closer than we think.

The paper, Notes on conformal invisibility devices, published in the New Journal of Physics (co-owned by the Institute of Physics and German Physical Society) describes the physics of several theoretical devices that could create the ultimate illusion – invisibility.

“Objects are visible because they reflect light rays” says author Dr Ulf Leonhardt at St Andrews University, Scotland. “To be invisible, an object would have to let light pass through it, like H. G. Well’s Invisible Man.

Alternatively light would have to bend around an object for it to be invisible. The ideas in this paper are based around devices that will bend light or radio waves around a hole inside the device. Any object placed inside the hole will become invisible. The light would flow round the hole like water around an obstacle.”

The bending of light is the cause of many optical illusions, such as mirages in the desert. Light bends in the hotter air near the ground in the desert and this causes a reflection of the sky on the ground – a mirage.

Dr Leonhardt went on to say “The devices work by bending light, as in a mirage. However, a mirage involves the reflection of light which produces the shiny image that can be seen: an invisibility device bends light without producing an image. To do this, the devices must have carefully designed refractive index profiles. The paper explains the physics and mathematics behind the devices using images rather than complex equations: it visualizes invisibility.”

The refractive index is a measure of the optical length that light has to travel in a medium: the higher the refractive index, the longer the optical path is to the light ray. Light rays bend when the refractive index of the medium they are travelling through varies. According to Fermat’s Principle of optical paths, light will follow the shortest optical path length. In the case of the mirage, air closer to the desert ground is hotter and has a lower refractive index than the cooler air higher up. Therefore light bends close to the desert floor in order to stay in the lower refractive index region.

Dr Leonhardt added “The next step is actually making one of these theoretical devices. There are advances being made in metamaterials that mean the first devices will probably be used for bending radar waves or the electromagnetic waves used by mobile phones. Such devices may be useful in wireless technology, for instance in protecting sensitive electronics from mobile-phone radiation in airplanes. After these have been developed, it is possible that devices that work for visible light are not too far behind.”

Helen MacBain | alfa
Further information:
http://www.iop.org
http://www.iop.org/EJ/abstract/1367-2630/8/7/118

More articles from Physics and Astronomy:

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

nachricht Theorists publish highest-precision prediction of muon magnetic anomaly
16.07.2018 | DOE/Brookhaven National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

New players, standardization and digitalization for more rail freight transport

16.07.2018 | Transportation and Logistics

Researchers discover natural product that could lead to new class of commercial herbicide

16.07.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>