Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reversing and accelerating the speed of light

24.07.2006
Ames Laboratory researchers use metamaterials to alter light's path, speed

Physicist Costas Soukoulis and his research group at the U.S. Department of Energy’s Ames Laboratory on the Iowa State University campus are having the time of their lives making light travel backwards at negative speeds that appear faster than the speed of light. That, folks, is a mind-boggling 186,000 miles per second – the speed at which electromagnetic waves can move in a vacuum. And making light seem to move faster than that and in reverse is what Soukoulis, who is also an ISU Distinguished Professor of Liberal Arts and Sciences, said is “like rewriting electromagnetism.” He predicted, “Snell’s law on the refraction of light is going to be different; a number of other laws will be different.”

However, neither Soukoulis nor any other scientist involved in efforts to manipulate the direction and speed of light can do so with naturally occurring materials. The endeavor requires exotic, artificially created materials. Known as metamaterials, these substances can be manipulated to respond to electromagnetic waves in ways that natural materials cannot. Natural materials refract light, or electromagnetic radiation, to the right of the incident beam at different angles and speeds. However, metamaterials, also called left-handed materials, make it possible to refract light at a negative angle, so it emerges on the left side of the incident beam. This backward-bending characteristic of metamaterials allows enhanced resolution in optical lenses, which could potentially lead to the development of a flat superlens with the power to see inside a human cell and diagnose disease in a baby still in the womb.

The challenge that Soukoulis and other scientists face who work with metamaterials is to fabricate them so that they refract light negatively at ever smaller wavelengths, with the ultimate goal of making a metamaterial that refracts light at visible wavelengths and achieving the much-sought-after superlens. Admittedly, that goal is a ways off. To date, existing metamaterials operate in the microwave or far infrared regions of the electromagnetic spectrum. The near infrared region of the spectrum still lies between the microwave and visible regions, and the wavelengths become ever shorter moving along the electromagnetic spectrum to visible light. Correspondingly, to negatively refract light at these shorter wavelengths requires fabricating metamaterials at extremely small length scales – a tricky feat.

However, recent research by Soukoulis and his co-workers from the University of Karlsruhe, Germany, published in the May 12, 2006, issue of Science demonstrates they have done just that. “We have fabricated for the first time a metamaterial that has a negative index of refraction at 1.5 micrometers,” said Soukoulis. “This is the smallest wavelength obtained so far.” Small, indeed; these wavelengths are microscopic and can be used in telecommunications. Soukoulis’ success moves metamaterials into the near infrared region of the electromagnetic spectrum – very close to visible light, superior resolution and a wealth of potential applications!

In addition, Soukoulis and his University of Karlsruhe colleagues have also shown that both the velocity of the individual wavelengths, called phase velocity, and the velocity of the wave packets, called group velocity, are both negative, which Soukoulis said accounts for the ability of negatively refracted light to seemingly defy Einstein’s theory of relativity and move backwards faster than the speed of light.

Elaborating, Soukoulis said, “When we have a metamaterial with a negative index of refraction at 1.5 micrometers that can disperse, or separate a wave into spectral components with different wavelengths, we can tune our lasers to play a lot of games with light. We can have a wavepacket hit a slab of negative index material, appear on the right-hand side of the material and begin to flow backward before the original pulse enters the negative index medium.”

Continuing, he explained that the pulse flowing backward also releases a forward pulse out the end of the medium, a situation that causes the pulse entering the front of the material appear to move out the back almost instantly.

“In this way, one can argue that that the wave packet travels with velocities much higher than the velocities of light,” said Soukoulis. “This is due to the dispersion of the negative index of refraction; there is nothing wrong with Einstein’s theory of relativity.” (These effects are clearly seen in the simulations that accompany this press release. Go to: Light Movies)

The Basic Energy Sciences Office of the DOE’s Office of Science funds Ames Laboratory’s research on metamaterials. Ames Laboratory is operated for the Department of Energy by Iowa State University. The Lab conducts research into various areas of national concern, including energy resources, high-speed computer design, environmental cleanup and restoration, and the synthesis and study of new materials.

Saren Johnston | EurekAlert!
Further information:
http://www.ameslab.gov

More articles from Physics and Astronomy:

nachricht Tangled magnetic fields power cosmic particle accelerators
14.12.2018 | DOE/SLAC National Accelerator Laboratory

nachricht In search of missing worlds, Hubble finds a fast evaporating exoplanet
14.12.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>