Powerful radiation source to further cancer research

Physicists will construct an ultra-high intensity THz beamline and attempt to destroy skin cancer cells specially grown in a new tissue culture facility. The experiments will help scientists understand how to use this technology in future treatments for the disease in humans.

The THz beamline, funded by the Northwest Regional Development Agency (NWDA) through its North West Science Fund, will be developed using the prototype Fourth Generation Light Source (4GLS) being constructed at CCLRC Daresbury Laboratory, which will be used to develop light sources used in X-ray technology, laser studies and radiation sources.

Physicist, Professor Peter Weightman, said: “The prototype 4GLS facility is based on an Energy Recovery Linear accelerator. The energy produced by firing electrons around this accelerator will partly be used to power the THz beamline, which will link up to a tissue culture facility developed with scientists at the University of Nottingham.

“The culture facility will be used to grow skin cancer cells and the THz radiation will target the source of the cancer. THz is absorbed by water and cancer cells retain water, so the THz radiation should be consumed by the cell and kill it off at the source.”

Terahertz radiation has also been used in the detection of concealed weapons, explosives and drugs as it has the ability to penetrate a variety of materials such as clothing, paper, cardboard, wood, masonry, plastics and ceramics. THz can also pick up on vibrations and rotations of molecules and has been useful in identifying molecules floating in space.

The team at Liverpool hope to develop these applications using the most powerful source of broad band terahertz available in Europe – a thousand times more powerful than current laboratory sources.

This will be the first time THz technology has been used on cancer cells and it will also be developed to characterise genetic material. THz has the capability of identifying mutations in DNA, which could help medics identify pharmaceutical therapies that will be compatible with individual patients’ DNA information.

Dr George Baxter, NWDA Director of Science and Innovation, said: “The NWDA is delighted to support this innovative project that will help develop new technology for the treatment of cancer. Investment in this project forms part of the NWDA’s commitment to build and sustain a knowledge based economy for England’s North West.”

The THz beamline will be fully operational in autumn 2007.

Media Contact

Samantha Martin alfa

More Information:

http://www.liv.ac.uk

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Security vulnerability in browser interface

… allows computer access via graphics card. Researchers at Graz University of Technology were successful with three different side-channel attacks on graphics cards via the WebGPU browser interface. The attacks…

A closer look at mechanochemistry

Ferdi Schüth and his team at the Max Planck Institut für Kohlenforschung in Mülheim/Germany have been studying the phenomena of mechanochemistry for several years. But what actually happens at the…

Severe Vulnerabilities Discovered in Software to Protect Internet Routing

A research team from the National Research Center for Applied Cybersecurity ATHENE led by Prof. Dr. Haya Schulmann has uncovered 18 vulnerabilities in crucial software components of Resource Public Key…

Partners & Sponsors