Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gassendi crater - clue on the thermal history of Mare Humorum

07.07.2006
This mosaic of two images, taken by the advanced Moon Imaging Experiment (AMIE) on board ESA's SMART-1 spacecraft, shows the inside of crater Gassendi on the Moon.

AMIE obtained these images on 13 January 2006, one minute apart from each other, from a distance of about 1220 kilometres (top frame) and 1196 kilometres (bottom frame) from the surface, with a ground resolution of 110 and 108 metres per pixel, respectively.


This mosaic of two images, taken by the advanced Moon Imaging Experiment (AMIE) on board ESA’s SMART-1 spacecraft, shows the inside of crater Gassendi on the Moon. AMIE obtained these images on 13 January 2006, one minute apart from each other, from a distance of about 1220 kilometres (top frame) and 1196 kilometres (bottom frame) from the surface, with a ground resolution of 110 and 108 metres per pixel, respectively. The area shown in the top image is centred at a latitude of 16.2º South and longitude 40.2º West, while the bottom images is centred at a latitude of 17.9º South and longitude 40.2º West. The mosaic shows the inside of crater Gassendi, an impact feature located on the near side of the Moon, at the northern edge of Mare Humorum. The crater is actually much larger than the field of view visible in this image. The hills on the lower right of the mosaic are the central peak of the crater, with a height of roughly 1.2 kilometres. The crater almost fully visible on the top is called 'Gassendi A'. Credits: ESA/SMART-1/Space-X (Space Exploration Institute)

The area shown in the top image is centred at a latitude of 16.2º South and longitude 40.2º West, while the bottom images is centred at a latitude of 17.9º South and longitude 40.2º West.

Gassendi is an impact feature located on the near side of the Moon, at the northern edge of Mare Humorum. The crater is actually much larger than the field of view visible in this image. The hills on the lower right of the mosaic are the central peak of the crater, with a height of roughly 1.2 kilometres. The crater almost fully visible on the top is called 'Gassendi A'.

Gassendi is a scientifically interesting site because it offers lunar landers the possibility of sampling ancient highland rocks (in the crater's central peak) as well as providing ages for both the Humorum impact basin and the Gassendi crater itself. However, because the terrain just outside the crater is quite rough, if a crew landed in this region, it would be pretty difficult to reach Gassendi's central peaks for sampling. Gassendi was considered as one of the three potential sites for the Apollo 17 mission, that eventually touched ground in the Taurus-Littrow valley.

The age of Gassendi crater is estimated to be about 3.6 thousand million years (with an error of plus or minus 700 million years).

When observed through spectroscopic analysis, crater Gassendi presents a 'behaviour' very different from any other lunar crater (Mikhail 1979). High resolution studies performed in the near-infrared light (Chevrel and Pinet 1990, 1992) indicated the presence of extrusive volcanic material (that is volcanic material flowing out from the surface and then crystallising) limited to the southern portion of Gassendi's floor, which is adjacent to Mare Humorum.

The interpretation of these data suggested that the central part of the crater, including the peak complex, may have a more 'mafic' nature (that is a composition of rocks coming from the solidification of magma which are rich rich in iron and magnesium silicates, such as olivine and pyroxene), with a higher pyroxene component than surrounding highlands.

The data interpretation also suggested that extensive extrusive volcanism may have occurred within the eastern portion of the floor, as also indicated by the significant presence of pyroxene that also corresponds to visible volcanic features. The western part of the crater floor, away from the geometric continuation of the western edge of Mare Humorum, is composed of highlands-rich material.

The difference between the western and eastern side of the Gassendi floor-fractured crater may be strongly linked to the early thermal history of Mare Humorum.

The crater is named after Pierre Gassendi (1592-1655), French philosopher, scientist and mathematician. In 1631, Gassendi became the first person to observe the transit of a planet across the Sun, viewing the transit of Mercury which Kepler had predicted.

Bernard H. Foing | alfa
Further information:
http://www.esa.int/SPECIALS/SMART-1/SEMV7DIO9PE_0.html

More articles from Physics and Astronomy:

nachricht MSU astronomers discovered supermassive black hole in an ultracompact dwarf galaxy
14.08.2018 | Lomonosov Moscow State University

nachricht ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres
13.08.2018 | Arizona State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>