Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Science of sniping on eBay, quantum experiment breakthrough, and tunable nanoresonators

23.06.2006
If you have ever tried to bid in an online auction, the chances are you have been sniped. That is, someone came along and placed a high bid just moments before the bidding deadline - eliminating your chances of outbidding them. Many people consider sniping unethical, robbing other bidders of a chance to buy an item and taking money out of sellers pockets by stifling fair competition.
Ethical or not, it turns out that sniping is the best way to win an auction. Researchers at Seoul National University have produced a model that mimics bidding behavior on eBay and a Korean auction site (auction.co.kr). The model confirms previous statistical studies of winning bidders that show that people who refrain from bidding at all until the very last seconds are much more likely to win than people who take part in earlier incremental bidding.

Although snipers miss out on occasion (if their late bids are not registered in time for the auction close) they are usually successful. Unless online auction companies adjust their rules to extend bidding deadlines when large, last second bids come in (as live auctioneers do), you are going to be better off sniping if you really must have that rare Pokemon card or Chia Pet planter.

Quantum Experiment Breakthrough: Interference of Independent Photons
R. Kaltenbaek et al.
Physical Review Letters (upcoming article, available to journalists on request)

Austrian physicists have managed the first demonstration of interference among independent photons - a phenomenon predicted decades ago, but experimentally unproven until now. The achievement is vital for future quantum computer designs as well as long distance versions of secure communication schemes that rely on quantum mechanics. Specifically, the experiment confirms that it will be possible to build quantum repeaters that transfer quantum information from one portion of a system to a remote portion, which is important if quantum computers and communications are ever to be realized.

At least one group has previously made similar claims (see PRL, 26 March 2006, http://link.aps.org/abstract/PRL/v96/e110501). In the earlier experiment, however, independent photons passed through some shared optical components, which would not be practical for physically separated portions of a real world quantum device and may lead to interactions that compromise the photons independence. The latest experiment demonstrates interference between photons that pass through completely separate sets of optical components. In addition to computational and communication applications, the experiment is an important demonstration of photon interactions that cannot be explained with classical physics, and therefore may lead to further experiments testing the foundations of quantum mechanics.

Linking quantum components together is a hot topic at the moment. At least two more PRL papers, one published this week and the other in the works, describe new quantum repeater proposals. One suggests quantum mechanically linking atoms through a mediating electron (A. T. Costa et al., http://link.aps.org/abstract/PRL/v96/e230501), another describes a quantum repeater design that relies on bright, coherent light rather than independent photons (P. van Loock et al., forthcoming PRL). Both papers are available to journalists on request.

Tunable Nanoresonators
K. Jensen et al.
Physical Review Letters, 2 June 2006
http://link.aps.org/abstract/PRL/v96/e215503

Researchers at the University of California at Berkeley (UCB) have developed a tunable, nanotube resonator that could lead to exquisitely sensitive and versatile sensors.

Nanoresonators are tiny vibrating beams, bridges or other structures. Because their resonant frequencies are highly dependent on various factors, such as their mass, length, and the stresses they are experiencing, nanoresonators make extremely sensitive measurement devices. (Recently, a nanoresonator-based scale managed to detect mass small enough to register the presence of a single bacterium.) Most nanoresonators operate at a single frequency or a very narrow band of frequencies. If a different frequency is required, you have to build a different resonator.

The UCB nanoresonators, however, are tunable because they are made of telescoping nanotubes that can extend like a trombone slide. By securing the telescoping nanotubes between two surfaces that can be moved relative to each other, the researchers were able to vary the nanoresonator frequencies over ranges of 50 to 75 megahertz. Each nanometer change in length leads to roughly a 1 megahertz shift in frequency, making the nanoresonators highly sensitive position and force sensors as well as tunable mass and frequency measurement devices.

Bidding Last Minute is Best on eBay
I. Yang and B. Kahng
Physical Review E, June 2006
http://link.aps.org/abstract/PRE/v73/e067101

James Riordon | EurekAlert!
Further information:
http://www.aps.org

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>