Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'We're down to the atom size': Cornell researchers discover how to focus on tiniest of the very small

20.06.2006
If you need a good picture of a molecule, your first job is getting its atoms to pose for you, says John Silcox, Cornell's David E. Burr Professor of Engineering and an expert in the realm of the very tiny.

But atoms are not willing subjects. They jiggle furiously, defying any microscopist who tries to catch them at a standstill. Nor are they polite: The larger atoms in a molecule typically overshadow the smaller ones, making it impossible to view the little ones.


This image of a lattice crystal was captured by Cornell researchers using a scanning transmission electron microscope (STEM) at IBM. The yellow circles in the center of each pear-shaped molecule represent the stronger signal produced by a large atom; the red portions that make up the top of each pear shape show the weaker signal of the smaller atoms. The image allows researchers to see the orientation of the individual atoms within a crystal for the first time, thus giving researchers a vital tool for predicting the crystal's properties. A model of the molecular structure is superimposed on the image.

Now, though, researchers at Cornell have developed a technique to get a closer-than-ever look at individual atoms within crystal molecules -- allowing them, for the first time, to see the polarity, or physical alignment, of those constituent atoms and to get a view of the smaller atoms.

The research -- by Cornell postdoctoral associate K. Andre Mkhoyan, Silcox and colleagues at Cornell, and Philip Batson of IBM -- is described in the June 2 issue of Science.

With the new technique, researchers can better predict the physical properties of a crystal at every point -- an advance that offers potential improvements in lasers and other devices, particularly at the nanoscale, where the structure of an individual molecule can determine a device's behavior.

To get their new and improved view, Mkhoyan's team used a scanning transmission electron microscope (STEM) at IBM on samples of aluminum nitride, gallium nitride and other crystals with particular significance in nanotechnology research, in a chamber padded and shielded to reduce potentially atom-jiggling acoustic noise and electromagnetic radiation. Fitting the STEM with an aberration corrector (a focusing device) developed at Nion Co., they directed a 0.9 angstroms-wide electron beam at tiny crystal samples, collecting the scattered electrons on a ring-shaped detector and forming an image based on the resulting scatter pattern. (An angstrom is one hundred-millionth of a centimeter). Because larger atoms deflect electrons at a larger angle than small ones, the resulting data is relatively simple to interpret.

Used on a sample of aluminum nitride, the technique, called annular dark imaging, shows pear-shaped molecule columns with the larger aluminum atoms at the thicker end and the smaller nitrogen atoms at the narrower end. It is the first time the smaller atoms in such a structure have been caught in an image.

The key, said Silcox, is the narrowness of the scanning electron beam.

"We're down to the atom size, as opposed to the atom spacing," said Silcox. "We can start to see the light atom columns; we can characterize the crystal very nicely and precisely, at every place on the structure."

Mkhoyan said the inability to capture such images in the past has been a huge hurdle for nanotechnology researchers.

"The study and application of these lattice crystals are at the core of nanotechnology. Many papers are dedicated to synthesis and application of the nanoparticles -- quantum dots, rods, wires, you name it -- based on these materials," he said. "However, the performance of the devices is highly dependent on the structural quality of these nanoparticles.

"With our STEM annular dark field imaging, we come to the rescue," Mkhoyan added. "We can zoom in, pick up any region of the structure, and see how it behaves."

Blaine P. Friedlander Jr. | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Physics and Astronomy:

nachricht Observations of nearby supernova and associated jet cocoon provide new insights on gamma-ray bursts
18.01.2019 | George Washington University

nachricht A new twist on a mesmerizing story
17.01.2019 | ETH Zurich Department of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>