Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Build An Ultrasound Version Of The Laser

08.06.2006


Researchers at the University of Illinois at Urbana-Champaign and at the University of Missouri at Rolla have built an ultrasound analogue of the laser.

Called a uaser (pronounced WAY-zer) - for ultrasound amplification by stimulated emission of radiation, the instrument produces ultrasonic waves that are coherent and of one frequency, and could be used to study laser dynamics and detect subtle changes, such as phase changes, in modern materials.

"We have demonstrated that the essential nature of a laser can be mimicked by classical mechanics - not quantum mechanics - in sound instead of light," said Richard Weaver, a professor of theoretical and applied mechanics at Illinois.



To make a uaser, Weaver, Illinois research associate Oleg Lobkis and Missouri physics professor Alexey Yamilov begin by mounting a number of piezoelectric auto-oscillators to a block of aluminum, which serves as an elastic, acoustic body. When an external acoustic source is applied to the body, the oscillators synchronize to its tone. Like fireflies trapped in a bottle, the oscillators synchronize to the frequency of the source.

In the absence of an external source, the tiny ultrasonic transducers become locked to one another by virtue of their mutual access to the same acoustic system.

"The phases must be correct also," Weaver said. "By carefully designing the transducers, we can assure the correct phases and produce stimulated emission. As a result, the power output scales with the square of the number of oscillators."

The uaser more closely resembles a "random laser" than it does a conventional, highly directional laser, Weaver said. "In principle, however, there is no reason why we shouldn’t be able to design a uaser to generate a narrow, highly directional beam."

Optical lasers are useful because of their coherent emission, high intensity and rapid switching. These features are of little value in acoustics, where coherence is the rule and not the exception, intensity is limited by available power, and maximum switching speeds are limited by moderate frequencies.

Nevertheless, uasers may be useful. With their longer wavelengths and more convenient frequencies, uasers could prove useful for modeling and studying laser dynamics. They could also serve as highly sensitive scientific tools for measuring the elastic properties and phase changes of modern materials, such as thin films or high-temperature superconductors.

"Uasers can produce an ultrasonic version of acoustical feedback - an ultrasonic howl similar to the squeal created when a microphone is placed too close to a speaker," Weaver said. "By slowly changing the temperature while monitoring the ultrasonic feedback frequency, we could precisely measure the phase change in various materials."

Weaver will describe the uaser and present his team’s latest experiments at the annual meeting of the Acoustical Society of America, to be held at the Rhode Island Convention Center in Providence, June 5-9.

The work was funded in part by the National Science Foundation.

James E. Kloeppel | University of Illinois
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>