Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space weather forecast step closer

12.12.2001


Loops of hot electrified gas above an active sunspot
© NASA/Standford University


American Geophysical Society Meeting, San Francisco, December 2001

The Sun’s violent outbursts have deep and twisted origins.


The Sun’s violent eruptions of material and magnetic energy have deep and twisted origins, researchers told this week’s American Geophysical Union Meeting in San Francisco, California.



These coronal mass ejections (CMEs) cause the aurora, seen at the Earth’s poles, and can knock out spacecraft. An understanding of what drives CMEs may one day make them possible to predict.

Radar aboard the NASA/European Space Agency spacecraft SOHO allowed a team from Stanford University in California to look beneath sunspots - dark patches on the Sun associated with CMEs.

Sunspots have been studied for centuries, but were thought to be exclusively a surface phenomenon. The researchers find that they in fact extend at least 100,000 kilometres below the Sun’s surface. "This is the first evidence that their roots go deep into the interior," says team member Alexander Kosovichev.

An examination of another sunspot by Junwei Zhao, also of Stanford, reveals magnetic field lines beneath the surface twisting around one another into bunches as the sunspot forms. "A huge amount of energy builds up in these bunches," says Zhao. When released, this would trigger a CME hurling solar material into space.

Sunspots had been observed rotating before, says Richard Nightingale, a solar physicist at Lockheed Martin in Palo Alto, California. "The coupling of above and below - that’s all new," he says.

Beneath the surface

"The interior of the Sun was simple before there were data," says Philip Scherer, who led the research. Models of the Sun’s interior assumed that buoyant hot material rose to the surface, where it was whipped up by the magnetic field lines that criss-cross the star’s exterior, forming sunspots and leading to CMEs.

Now it appears that material rising from deep within the Sun can twist magnetic field lines, giving them more energy. "Convection is being converted into magnetic fields," says Scherer.

This may produce the giant loops of overstretched magnetic fields that arch out of sunspots. The snapping of these loops releases energy, causing CMEs. Why the processes occur at specific locations is still a mystery.

The structure below the surface is currently too complicated to predict accurately, according to George Fisher, who models the Sun’s behaviour at the University of California at Berkeley. More data from sunspots may reveal patterns in the rising solar material and their interactions with magnetic field lines. "In about five years’ time we should be able to model some kind of real events," he says.

Fisher aims to use data from SOHO and future missions to model the Sun’s magnetic field completely. Then he hopes to be able to spot CMEs stirring within the Sun and to forecast the resulting weather in space.

TOM CLARKE | © Nature News Service

More articles from Physics and Astronomy:

nachricht From the cosmos to fusion plasmas, PPPL presents findings at global APS gathering
13.11.2018 | DOE/Princeton Plasma Physics Laboratory

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

NIH scientists illuminate causes of hepatitis b virus-associated acute liver failure

14.11.2018 | Life Sciences

The unintended consequences of dams and reservoirs

14.11.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>