Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Illinois researchers produce two most important scientific papers

07.06.2006


Two of the five most important papers published in the 43-year history of the journal Applied Physics Letters were written by researchers at the University of Illinois at Urbana-Champaign.



Nick Holonyak Jr., a John Bardeen Chair Professor of Electrical and Computer Engineering and Physics at Illinois, was an author of both papers, which span the development of the light-emitting diode to the invention of the transistor laser.

As the American Institute of Physics celebrates its 75th anniversary this year, editors of the organization’s research journals were asked to select the five most significant papers published in each journal. In the case of Applied Physics Letters, thousands of papers were considered -- not only for scientific content, but also for the impact a paper had, or might have, on industry or the general public.


The first of Holonyak’s chosen papers appeared in the journal’s Dec. 1, 1962, issue and reported the first semiconductor laser in the visible spectrum and the first visible light-emitting diode, which formed the basis for today’s high brightness light-emitting diodes.

"This may be the most important piece of work I’ve ever done," said Holonyak, who was employed at the General Electric Co. in Syracuse, N.Y., at the time. Holonyak’s technician, Sam (Severio) Bevacqua, was the paper’s only co-author.

The second paper selected by the journal appeared in the Sept. 26, 2005, issue and reported the first room-temperature operation of a transistor laser. "I consider this a very important development and maybe -- time will tell -- a great development," Holonyak said.

In addition to Holonyak, the paper’s co-authors were electrical and computer engineering professor Milton Feng, and postdoctoral research associate Gabriel Walter and graduate research assistant Richard Chan (now at BAE Systems).

The Illinois researchers first reported the demonstration of a light-emitting, heterojunction bipolar transistor in the journal’s Jan. 5, 2004, issue. They described the first laser operation of the light-emitting transistor in the Nov. 15, 2004, issue, but at that time the transistor laser had to be chilled with liquid nitrogen to minus 73 degrees Celsius.

By demonstrating room-temperature operation, the researchers moved the transistor laser much closer to practical applications.

"Room-temperature transistor lasers could facilitate faster signal processing, large capacity seamless communications, and higher performance electrical and optical integrated circuits," said Feng, the Holonyak Chair Professor of Electrical and Computer Engineering at Illinois. Feng has received worldwide recognition for his research on heterojunction bipolar transistors. He has produced the world’s fastest bipolar transistor, a device that operates at a frequency of more than 700 gigahertz.

The transistor laser combines the functionality of both a transistor and a laser by converting electrical input signals into two output signals, one electrical and one optical.

"By incorporating quantum wells into the active region, we have enhanced the electrical and optical properties, making possible stimulated emission and transistor laser operation," said Holonyak, who also is a professor in the university’s Center for Advanced Study, one of the highest forms of campus recognition. "What we have here is a new form of transistor and a new form of laser."

The transistor laser also raises the possibility of replacing wiring between components at the chip- or board-level with optical interconnects, offering more flexibility and capability in true electronic-integrated circuits.

"Fifty-eight years after (John) Bardeen and (Walter) Brattain invented the transistor, we have hit upon something new that is surprisingly fundamental and rich in possibilities," Holonyak said. "I am happy to have had a hand in this."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>