Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interiors of extrasolar planets: A first step

30.05.2006


Up to now, astronomers have discovered 188 extrasolar planets, among which 10 are known as “transiting planets&rdquo. These planets pass between their star and us at each orbit (Figure 1). Given the current technical limitations, the only transiting planets that can be detected are giant planets orbiting close to their parent star known as “hot Jupiters” or Pegasids. The ten transiting planets known thus far have masses between 110 and 430 Earth masses (for comparison, Jupiter, with 318 Earth masses, is the most massive planet in our Solar System).



Although rare, transiting planets are the key to understanding planetary formation because they are the only ones for which both the mass and radius can be determined. In principle, the obtained mean density can constrain their global composition. However, translating a mean density into a global composition needs accurate models of the internal structure and evolution of planets. The situation is made difficult by our relatively poor knowledge of the behaviour of matter at high pressures (the pressure in the interiors of giant planets is more than a million times the atmospheric pressure on Earth). Of the nine transiting planets known up to April 2006, only the least massive one could have its global composition determined satisfactorily. It was shown to possess a massive core of heavy elements, about 70 times the mass of the Earth, with a 40 Earth-mass envelope of hydrogen and helium. Of the remaining eight planets, six were found to be mostly made up of hydrogen and helium, like Jupiter and Saturn, but their core mass could not be determined. The last two were found to be too large to be explained by simple models.

Considering them as an ensemble for the first time, and accounting for the anomalously large planets, Tristan Guillot and his team [1] found that the nine transiting planets have homogeneous properties, with a core mass ranging from 0 (no core, or a small one) up to 100 times the mass of the Earth, and a surrounding envelope of hydrogen and helium. Some of the Pegasids should therefore contain larger amounts of heavy elements than expected. When comparing the mass of heavy elements in the Pegasids to the metallicity of the parent stars, they also found a correlation to exist, with planets born around stars that are as metal-rich as our Sun and that have small cores, while planets orbiting stars that contain two to three times more metals have much larger cores, as shown in Figure 2. Their results will be published in Astronomy & Astrophysics.


Planet formation models have failed to predict the large amounts of heavy elements found this way in many planets, so these results imply that they need revising. The correlation between stellar and planetary composition has to be confirmed by further discoveries of transiting planets, but this work is a first step in studying the physical nature of extrasolar planets and their formation. It would explain why transiting planets are so hard to find, to start with. Because most Pegasids have relatively large cores, they are smaller than expected and more difficult to detect in transit in front of their stars. In any case, this is very promising for the CNES space mission COROT to be launched in October, which should discover and lead to characterization of tens of transiting planets, including smaller planets and planets orbiting too far from their star to be detected from the ground.

What of the tenth transiting planet? XO-1b was announced very recently (see NASA press release) and is also found to be an anomalously large planet orbiting a star of solar metallicity. Models imply that it has a very small core, so that this new discovery strengthens the proposed stellar-planetary metallicity correlation.

Jennifer Martin | alfa
Further information:
http://www.edpsciences.org/journal/index.cfm?edpsname=aa&niv1=others&niv2=press_release&niv3=PRaa200611

More articles from Physics and Astronomy:

nachricht MSU astronomers discovered supermassive black hole in an ultracompact dwarf galaxy
14.08.2018 | Lomonosov Moscow State University

nachricht ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres
13.08.2018 | Arizona State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>