Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astrophysicists Discover ‘Compact Jets’ From Neutron Star

24.05.2006


Compact jets that shoot matter into space in a continuous stream at near the speed of light have long been assumed to be a unique feature of black holes. But these odd features of the universe may be more common than once thought.


Artist concept shows jets of material
shooting out from the neutron star. NASA/JPL-Caltech/R. Hurt (SSC)



Astrophysicists using NASA’s Spitzer Space Telescope recently spotted one of these jets around a super-dense dead star, confirming for the first time that neutron stars as well as black holes can produce these fire-hose-like jets of matter. A paper detailing their surprising discovery appears in this week’s issue of the Astrophysical Journal Letters.

"For years, scientists suspected that something unique to black holes must be fueling the continuous compact jets because we only saw them coming from black hole systems,” said Simone Migliari, an astrophysicist at the University of California, San Diego’s Center for Astrophysics and Space Sciences and the lead author of the paper. “Now that Spitzer has revealed a steady jet coming from a neutron star in an X-ray binary system, we know that the jets must be fueled by something that both systems share.”


A neutron star X-ray binary system occurs when a normal star orbits a dead star that is so dense all of its atoms have collapsed into neutrons, hence the name “neutron star.” The normal star circles the neutron star the same way Earth orbits the Sun.

Migliari and his colleagues from four institutions in the U.S. and Europe used Spitzer’s super sensitive infrared eyes to study a jet in one such system called 4U 0614+091. In this system, the neutron star is more than 14 times the mass of its orbiting stellar companion.

As the smaller star travels around its dead partner, the neutron star’s intense gravity picks up material leaving the smaller star’s atmosphere and creates a disk around itself. The disk of matter, or accretion disk, circles the neutron star similar to the way rings circle Saturn. According to Migliari, accretion disks and intense gravitational fields are characteristics that black holes and neutron stars in X-ray binaries share.

“Our data show that the presence of an accretion disk and an intense gravitational field may be all we need to form and fuel a compact jet,” he said.

Typically, radio telescopes are the tool of choice for observing compact jets around black holes. At radio wavelengths, astronomers can isolate the jet from everything else in the system. However, because the compact jets of a neutron star can be more than 10 times fainter than those of a black hole, using a radio telescope to observe a neutron star’s jet would take many hours of observations.

With Spitzer’s supersensitive infrared eyes, Migliari’s team detected 4U 0614+091’s faint jet in minutes. The infrared telescope also helped astronomers infer details about the jet’s geometry. System 4U 0614+091 is located approximately 10,000 light years away in the constellation Orion.

Other co-authors of the paper are John Tomsick of UCSD; Thomas Maccarone, Rob Fender and David Russell of the University of Southampton, UK; Elena Gallo of UC Santa Barbara; and Gijs Nelemans of the University of Nijmegen in the Netherlands.

NASA’s Jet Propulsion Laboratory manages the Spitzer Space Telescope and science operations for the mission are conducted at the Spitzer Science Center at the California Institute of Technology.

Media Contacts:
Kim McDonald, UCSD, (858) 534-7572
Whitney Clavin, NASA’s Jet Propulsion Laboratory, (818) 354-4673

Kim McDonald | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>