Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New capture scenario explains origin of Neptune’s oddball moon Triton

11.05.2006


Neptune’s large moon Triton may have abandoned an earlier partner to arrive in its unusual orbit around Neptune. Triton is unique among all the large moons in the solar system because it orbits Neptune in a direction opposite to the planet’s rotation (a "retrograde" orbit). It is unlikely to have formed in this configuration and was probably captured from elsewhere.



In the May 11 issue of the journal Nature, planetary scientists Craig Agnor of the University of California, Santa Cruz, and Douglas Hamilton of the University of Maryland describe a new model for the capture of planetary satellites involving a three-body gravitational encounter between a binary and a planet. According to this scenario, Triton was originally a member of a binary pair of objects orbiting the Sun. Gravitational interactions during a close approach to Neptune then pulled Triton away from its binary companion to become a satellite of Neptune.

"We’ve found a likely solution to the long-standing problem of how Triton arrived in its peculiar orbit. In addition, this mechanism introduces a new pathway for the capture of satellites by planets that may be relevant to other objects in the solar system," said Agnor, a researcher in UCSC’s Center for the Origin, Dynamics, and Evolution of Planets.


With properties similar to the planet Pluto and about 40 percent more massive, Triton has an inclined, circular orbit that lies between a group of small inner moons with prograde orbits and an outer group of small satellites with both prograde and retrograde orbits. There are other retrograde moons in the solar system, including the small outer moons of Jupiter and Saturn, but all are tiny compared to Triton (less than a few thousandths of its mass) and have much larger and more eccentric orbits about their parent planets.

Triton may have come from a binary very similar to Pluto and its moon Charon, Agnor said. Charon is relatively massive, about one-eighth the mass of Pluto, he explained.

"It’s not so much that Charon orbits Pluto, but rather both move around their mutual center of mass, which lies between the two objects," Agnor said.

In a close encounter with a giant planet like Neptune, such a system can be pulled apart by the planet’s gravitational forces. The orbital motion of the binary usually causes one member to move more slowly than the other. Disruption of the binary leaves each object with residual motions that can result in a permanent change of orbital companions. This mechanism, known as an exchange reaction, could have delivered Triton to any of a variety of different orbits around Neptune, Agnor said.

An earlier scenario proposed for Triton is that it may have collided with another satellite near Neptune. But this mechanism requires the object involved in the collision to be large enough to slow Triton down, but small enough not to destroy it. The probability of such a collision is extremely small, Agnor said.

Another suggestion was that aerodynamic drag from a disk of gas around Neptune slowed Triton down enough for it to be captured. But this scenario puts constraints on the timing of the capture event, which would have to occur early in Neptune’s history when the planet was surrounded by a gas disk, but late enough that the gas would disperse before it slowed Triton’s orbit enough to send the moon crashing into the planet.

In the past decade, many binaries have been discovered in the Kuiper belt and elsewhere in the solar system. Recent surveys indicate that about 11 percent of Kuiper belt objects are binaries, as are about 16 percent of near-Earth asteroids.

"These discoveries pointed the way to our new explanation of Triton’s capture," Hamilton said. "Binaries appear to be a ubiquitous feature of small-body populations."

The Pluto/Charon pair and binaries in the Kuiper belt are especially relevant for Triton, as their orbits abut Neptune’s, he said.

"Similar objects have probably been around for billions of years, and their prevalence indicates that the binary-planet encounter that we propose for Triton’s capture is not particularly restrictive," Hamilton said.

The exchange reaction described by Agnor and Hamilton may have broad applications in understanding the evolution of the solar system, which contains many irregular satellites. The researchers plan to explore the implications of their findings for other satellite systems.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Physics and Astronomy:

nachricht Tel Aviv University-led team discovers new way supermassive black holes are 'fed'
15.01.2019 | American Friends of Tel Aviv University

nachricht Arbitrary quantum channel simulation for a superconducting qubit
14.01.2019 | Science China Press

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

Im Focus: Programming light on a chip

Research opens doors in photonic quantum information processing, optical signal processing and microwave photonics

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can...

Im Focus: Physicists uncover new competing state of matter in superconducting material

A team of experimentalists at the U.S. Department of Energy's Ames Laboratory and theoreticians at University of Alabama Birmingham discovered a remarkably long-lived new state of matter in an iron pnictide superconductor, which reveals a laser-induced formation of collective behaviors that compete with superconductivity.

"Superconductivity is a strange state of matter, in which the pairing of electrons makes them move faster," said Jigang Wang, Ames Laboratory physicist and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

 
Latest News

Scientists coax proteins to form synthetic structures with method that mimics nature

15.01.2019 | Life Sciences

Next generation photonic memory devices are light-written, ultrafast and energy efficient

15.01.2019 | Information Technology

Viennese scientists develop promising new type of polymers

15.01.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>