Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meteorites discovered to carry interstellar carbon

05.05.2006


Like an interplanetary spaceship carrying passengers, meteorites have long been suspected of ferrying relatively young ingredients of life to our planet. Using new techniques, scientists at the Carnegie Institution’s Department of Terrestrial Magnetism have discovered that meteorites can carry other, much older passengers as well--primitive, organic particles that originated billions of years ago either in interstellar space, or in the outer reaches of the solar system as it was beginning to coalesce from gas and dust. The study shows that the parent bodies of meteorites--the large objects from the asteroid belt--contain primitive organic matter similar to that found in interplanetary dust particles that might come from comets. The finding provides clues about how organic matter was distributed and processed in the solar system during this long-gone era. The work is published in the May 5, 2006, issue of Science.



"Atoms of different elements come in different forms, or isotopes, and the relative proportions of these depend on the environmental conditions in which their carriers formed, such as the heat encountered, chemical reactions with other elements, and so forth," explained lead author Henner Busemann. "In this study we looked at the relative amounts of different isotopes of hydrogen (H) and nitrogen (N) associated with tiny particles of insoluble organic matter to determine the processes that produced the most pristine type of meteorites known. The insoluble material is very hard to break down chemically and survives even very harsh acid treatments."

The researchers used a microscopic imaging technique to analyze the isotopic composition of insoluble organic matter from six carbonaceous chondrite meteorites--the oldest type known. The relative proportion of isotopes of nitrogen and hydrogen associated with the insoluble organic matter act as "fingerprints" and can reveal how and when the carbon was formed. The isotope of nitrogen that is most often found in nature is 14N; its heavier sibling is 15N. Differing amounts of 15N, in addition to a heavier form of hydrogen called deuterium, (D), allow researchers to tell if a particle is relatively unaltered from the time when the solar system was first forming.


"The tell-tale signs are lots of deuterium and 15N chemically bonded to carbon," commented co-author Larry Nittler. "We have known for some time, for instance, that interplanetary dust particles (IDP), collected from high-flying airplanes in the upper atmosphere, contain huge excesses of these isotopes, probably indicating vestiges of organic material that formed in the interstellar medium. The IDPs have other characteristics indicating that they originated on bodies--perhaps comets--that have undergone less severe processing than the asteroids from which meteorites originate."

The scientists found that some meteorite samples, when examined at the same tiny scales as interplanetary dust particles, actually have similar or even higher abundances of 15N and D than those reported for IDPs. "It’s amazing that pristine organic molecules associated with these isotopes were able to survive the harsh and tumultuous conditions present in the inner solar system when the meteorites that contain them came together," reflected co-author Conel Alexander. "It means that the parent bodies--the comets and asteroids--of these seemingly different types of extraterrestrial material are more similar in origin than previously believed."

"Before, we could only explore minute samples from IDPs. Our discovery now allows us to extract large amounts of this material from meteorites, which are large and contain several percent of carbon, instead of from IDPs, which are on the order of a million million times less massive. This advancement has opened up an entirely new window on studying this elusive period of time," concluded Busemann.

Henner Busemann | EurekAlert!
Further information:
http://www.ciw.edu
http://www.carnegieinstitution.org/meteorites/images

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>