Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Titan’s Seas Are Sand

05.05.2006


Until a couple of years ago, scientists thought the dark equatorial regions of Titan might be liquid oceans.

New radar evidence shows they are seas -- but seas of sand dunes like those in the Arabian or Namibian Deserts, a University of Arizona member of the Cassini radar team and colleagues report in Science (May 5).

Radar images taken when the Cassini spacecraft flew by Titan last October show dunes 330 feet (100 meters) high that run parallel to each other for hundreds of miles at Titan’s equator. One dune field runs more than 930 miles (1500 km) long, said Ralph Lorenz of UA’s Lunar and Planetary Laboratory.



"It’s bizarre," Lorenz said. "These images from a moon of Saturn look just like radar images of Namibia or Arabia. Titan’s atmosphere is thicker than Earth’s, its gravity is lower, its sand is certainly different -- everything is different except for the physical process that forms the dunes and resulting landscape."

Ten years ago, scientists believed that Saturn’s moon Titan is too far from the sun to have solar-driven surface winds powerful enough to sculpt sand dunes. They also theorized that the dark regions at Titan’s equator might be liquid ethane oceans that would trap sand.

But researchers have since learned that Saturn’s powerful gravity creates significant tides in Titan’s atmosphere. Saturn’s tidal effect on Titan is roughly 400 times greater than our moon’s tidal pull on Earth.

As first seen in circulation models a couple of years ago, Lorenz said, "Tides apparently dominate the near-surface winds because they’re so strong throughout the atmosphere, top to bottom. Solar-driven winds are strong only high up."

The dunes seen by Cassini radar are a particular linear or longitudinal type that is characteristic of dunes formed by winds blowing from different directions. The tides cause wind to change direction as they drive winds toward the equator, Lorenz said.

And when the tidal wind combines with Titan’s west-to-east zonal wind, as the radar images show, it creates dunes aligned nearly west-east except near mountains that influence local wind direction.

"When we saw these dunes in radar it started to make sense," he said. "If you look at the dunes, you see tidal winds might be blowing sand around the moon several times and working it into dunes at the equator. It’s possible that tidal winds are carrying dark sediments from higher latitudes to the equator, forming Titan’s dark belt."

The researchers’ model of Titan suggests tides can create surface winds that reach about one mile per hour (a half-meter per second). "Even though this is a very gentle wind, this is enough to blow grains along the ground in Titan’s thick atmosphere and low gravity," Lorenz said. Titan’s sand is a little coarser but less dense than typical sand on Earth or Mars. "These grains might resemble coffee grounds."

The variable tidal wind combines with Titan’s west-to-east zonal wind to create surface winds that average about one mile per hour (a half meter per second). Average wind speed is a bit deceptive, because sand dunes wouldn’t form on Earth or Mars at their average wind speeds.

Whether the grains are made of organic solids, water ice, or a mixture of both is a mystery. Cassini’s Visual and Infrared Mapping Spectrometer, led by UA’s Robert Brown, may get results on sand dune composition.

How the sand formed is another peculiar story.

Sand may have formed when liquid methane rain eroded particles from ice bedrock. Researchers previously thought that it doesn’t rain enough on Titan to erode much bedrock, but they thought in terms of average rainfall.

Observations and models of Titan show that clouds and rain are rare. That means that individual storms could be large and still yield a low average rainfall, Lorenz explained.

When the UA-led Descent Imager/Spectral Radiometer (DISR) team produced images taken during the Huygens probe landing on Titan in January 2005, the world saw gullies, streambeds and canyons in the landscape. These same features on Titan have been seen with radar.

These features show that when it does rain on Titan, it rains in very energetic events, just as it does in the Arizona desert, Lorenz said.

Energetic rain that triggers flash floods may be a mechanism for making sand, he added.

Alternatively, the sand may come from organic solids produced by photochemical reactions in Titan’s atmosphere.

"It’s exciting that the radar, which is mainly to study the surface of Titan, is telling us so much about how winds on Titan work," Lorenz said. "This will be important information for when we return to Titan in the future, perhaps with a balloon."

An international group of scientists are co-authors on the Science article, "The Sand Seas of Titan: Cassini Observations of Longitudinal Dunes." They are from the Jet Propulsion Laboratory, California Institute of Technology, U.S. Geological Survey - Flagstaff, Planetary Science Institute, Wheeling Jesuit College, Proxemy Research of Bowie, Md., Stanford University, Goddard Institute for Space Studies, Observatoire de Paris, International Research School of Planetary Sciences, Universita’ d’Annunzio, Facolt di Ingegneria, Universit La Sapienza, Politecnico di Bari and Agenzia Spaziale Italiana. Jani Radebaugh and Jonathan Lunine of UA’s Lunar and Planetary Laboratory are among the co-authors.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington. The Cassini orbiter was designed, developed and assembled at JPL.

Lori Stiles | University of Arizona
Further information:
http://www.lpl.arizona.edu/~rlorenz
http://www.nasa.gov/cassini
http://saturn.jpl.nasa.gov

More articles from Physics and Astronomy:

nachricht New type of low-energy nanolaser that shines in all directions
18.12.2018 | Eindhoven University of Technology

nachricht NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate
18.12.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>