Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evidence mounts for sun’s companion star

26.04.2006


The Binary Research Institute (BRI) has found that orbital characteristics of the recently discovered planetoid, "Sedna", demonstrate the possibility that our sun might be part of a binary star system. A binary star system consists of two stars gravitationally bound orbiting a common center of mass. Once thought to be highly unusual, such systems are now considered to be common in the Milky Way galaxy.



Walter Cruttenden at BRI, Professor Richard Muller at UC Berkeley, Dr. Daniel Whitmire of the University of Louisiana, amongst several others, have long speculated on the possibility that our sun might have an as yet undiscovered companion. Most of the evidence has been statistical rather than physical. The recent discovery of Sedna, a small planet like object first detected by Cal Tech astronomer Dr. Michael Brown, provides what could be indirect physical evidence of a solar companion. Matching the recent findings by Dr. Brown, showing that Sedna moves in a highly unusual elliptical orbit, Cruttenden has determined that Sedna moves in resonance with previously published orbital data for a hypothetical companion star.

In the May 2006 issue of Discover, Dr. Brown stated: "Sedna shouldn’t be there. There’s no way to put Sedna where it is. It never comes close enough to be affected by the sun, but it never goes far enough away from the sun to be affected by other stars... Sedna is stuck, frozen in place; there’s no way to move it, basically there’s no way to put it there – unless it formed there. But it’s in a very elliptical orbit like that. It simply can’t be there. There’s no possible way - except it is. So how, then?"


"I’m thinking it was placed there in the earliest history of the solar system. I’m thinking it could have gotten there if there used to be stars a lot closer than they are now and those stars affected Sedna on the outer part of its orbit and then later on moved away. So I call Sedna a fossil record of the earliest solar system. Eventually, when other fossil records are found, Sedna will help tell us how the sun formed and the number of stars that were close to the sun when it formed."

Walter Cruttenden agrees that Sedna’s highly elliptical orbit is very unusual, but noted that the orbit period of 12,000 years is in neat resonance with the expected orbit periodicity of a companion star as outlined in several prior papers. Consequently, Cruttenden believes that Sedna’s unusual orbit is something indicative of the current solar system configuration, not merely a historical record. "It is hard to imagine that Sedna would retain its highly elliptical orbit pattern since the beginning of the solar system billions of years ago. Because eccentricity would likely fade with time, it is logical to assume Sedna is telling us something about current, albeit unexpected solar system forces, most probably a companion star".

Outside of a few popular articles, and Cruttenden’s book "Lost Star of Myth and Time", which outlines historical references and the modern search for the elusive companion, the possibility of a binary partner star to our sun has been left to the halls of academia. But with Dr. Brown’s recent discoveries of Sedna and Xena, (now confirmed to be larger than Pluto), and timing observations like Cruttenden’s, the search for a companion star may be gaining momentum.

Heidi Hall | EurekAlert!
Further information:
http://www.binaryresearchinstitute.org/

More articles from Physics and Astronomy:

nachricht Researchers discover link between magnetic field strength and temperature
21.08.2018 | American Institute of Physics

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>