Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paint-on laser could rescue computer chip industry

19.04.2006


Laser that could save computer industry from ’interconnect bottleneck’ uses quantum paint — and a hairdryer

Researchers at the University of Toronto have created a laser that could help save the $200-billion dollar computer chip industry from a looming crisis dubbed the "interconnect bottleneck."

But this isn’t a laser in the stereotypical sense -- no corded, clunky boxes projecting different coloured lights. In fact, Professor Ted Sargent, of the Edward S. Rogers Sr. Department of Electrical and Computer Engineering, carries a small vial of the paint used to make this laser in his briefcase -- it looks like diluted ink.



Lasers that can produce coherent infrared light in the one to two nanometre wavelength range are essential in telecommunications, biomedical diagnosis and optical sensing. The speed and density of computer chips has risen exponentially over the years, and within 15 to 20 years the industry is expected to reach a point where components can’t get any faster. But the interconnect bottleneck -- the point where microchips reach their capacity -- is expected sometime around 2010.

To tackle this problem, Sargent, a Canada Research Chair in Nanotechnology, created the new laser using colloidal quantum dots -- nanometre-sized particles of semiconductor that are suspended in a solvent like the particles in paint. "We’ve made a laser that can be smeared onto another material," says Sargent. "This is the first paint-on semiconductor laser to produce the invisible colours of light needed to carry information through fiber-optics. The infrared light could, in the future, be used to connect microprocessors on a silicon computer chip." A study describing the laser was published in the April 17 issue of the journal Optics Express.

According to Sjoerd Hoogland, a post-doctoral fellow and the first author of the paper, "this laser could help us to keep feeding the information-hungry Internet generation." The laser’s most remarkable feature was its simplicity. "I made the laser by dipping a miniature glass tube in the paint and then drying it with a hairdryer," he said. "Once the right nanoparticles are made, the procedure takes about five minutes."

The microchip industry is looking for components that exist on the scale of transistors and are made of semiconductors, which would produce light when exposed to electrical current. With this development, it could be possible to use the electronics already found on microchips to power a laser that communicates within the chip itself.

"We crystallized precisely the size of the nanoparticles that would tune the colour of light coming from the laser. We chose nanoparticle size, and thus colour, the way a guitarist chooses frets to select the pitch of the instrument," Hoogland said. "Optical data transfer relies on light in the infrared--beams of light 1.5 micrometers in wavelength travel farthest in glass. We made our particles just the right size to generate laser light at exactly this wavelength."

Lionel C. Kimerling, Thomas Lord Professor of Materials Science and director of the Microphotonics Center at the Massachusetts Institute of Technology, reviewed the work. "The wavelength and the thermal budget of the Toronto laser are very appealing for applications in optical interconnects," Kimerling says. "The performance is excellent, particularly the temperature insensitivity of the output wavelength."

Nicolle Wahl | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Physics and Astronomy:

nachricht When AI and optoelectronics meet: Researchers take control of light properties
20.11.2018 | Institut national de la recherche scientifique - INRS

nachricht How to melt gold at room temperature
20.11.2018 | Chalmers University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>