Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds two supermassive black holes spiraling toward collision

10.04.2006


A pair of supermassive black holes in the distant universe are intertwined and spiraling toward a merger that will create a single super-supermassive black hole capable of swallowing billions of stars, according to a new study by astronomers at the University of Virginia, Bonn University and the U.S. Naval Research Laboratory.



The study appears in the April 6, 2006 issue of the journal Astronomy & Astrophysics.

Black holes are among the oldest regions of the universe and hold clues to understanding the formation of the universe and its destiny. Though astronomers have theorized that coupled black holes exist, and that black holes sometimes merge and form supermassive black holes, the new study provides further evidence that this in fact occurs.


"The two key questions about supermassive black holes are: Where do they come from and how do they grow over time?" said Craig Sarazin, the W.H. Vanderbilt Professor of Astronomy at the University of Virginia and co-author of the study. "The birth, care and nurturing of supermassive black holes is a very active area of study in astronomy."

Supermassive black holes are areas in space that are so dense and massive they contain up to billions of stars and continually suck in more stars, further building their mass and gravitational pull. Even light cannot escape the pull of gravity in a black hole. The area appears as it is described: a black hole in space.

"Black holes are the ultimate garbage disposals," Sarazin said. "The material they swallow disappears without any trace, except for the gravity of the black hole."

Sarazin and his colleagues used NASA’s Chandra X-ray Observatory to glean their results. Black holes are detectable because they produce large amounts of X-ray emission, similar to the radiation used for medical diagnosis. This high-energy radiation is invisible to our eyes, but can be seen with X-ray telescopes.

"There is no way to determine how a black hole was created or what kinds of things it has swallowed just by looking at the resulting black hole," Sarazin said. "You have to catch the black hole when it is sitting down to dinner or still eating." That, essentially, is what the Sarazin team has accomplished. They focused their observations on the center of a cluster of galaxies named Abell 400 where astronomers had previously suggested that a pair of supermassive black holes might be colliding. The two holes seemed to be relatively close together, but there was no proof that they were bound to one another or merging.

"The question was: Is this pair of supermassive black holes an old married couple, or just strangers passing in the night?" Sarazin said. "We now know that they are coupled, but more like the mating of black widow spiders. One of the black holes invariably will eat the other."

NASA is interested in helping astronomers better understand the formation of supermassive black holes and is currently planning to build an array of three space satellites called LISA (Laser Interferometry Space Antenna) to detect gravity waves from merging black holes.

"Obviously, astronomers would like to be certain that this process of supermassive black hole mergers really does occur, so that LISA will have something to detect," Sarazin said.

In recent years, astronomers have discovered that every large galaxy in the present day universe likely has a supermassive black hole. The Milky Way’s own supermassive black hole has swallowed as much material as four million suns. The biggest galaxies contain black holes that have swallowed many billions of stars worth of material.

In some cases, two galaxies containing supermassive black holes collide and merge together, and eventually the two supermassive black holes fall into the center of the merged larger galaxy, and spiral together. Ultimately, they merge into one even larger hole. Sarazin’s team found that the two merging supermassive black holes in Abell 400 appear to be swallowing gas from their host galaxy, and each is ejecting a pair of oppositely-directed jets of radio-emitting plasma. As the supermassive black holes fall through the gas in the cluster Abell 400, jets of radio-emitting plasma are swept back behind them.

"The jets are similar to the contrails produced by planes as they fly through the air on Earth," Sarazin said. "From the contrails, we can determine where the planes have been, and in which direction they are going. What we see is that the jets are bent together and intertwined, which indicates that the pair of supermassive black holes are bound and moving together."

Craig Sarazin | EurekAlert!
Further information:
http://www.virginia.edu

More articles from Physics and Astronomy:

nachricht MSU astronomers discovered supermassive black hole in an ultracompact dwarf galaxy
14.08.2018 | Lomonosov Moscow State University

nachricht ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres
13.08.2018 | Arizona State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>