Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reiner Gamma swirl: magnetic effect of a cometary impact?

07.04.2006


This animation, made from images taken by the Advanced Moon Imaging Experiment (AMIE) on board ESA’s SMART-1 spacecraft, shows a feature characterized by bright albedo, and called Reiner Gamma Formation.



The Reiner Gamma Formation, a totally flat area consisting of much brighter material than the surrounding dark ’mare’, is centred on an area located at 57.8° West, 8.1° North, in the Oceanus Procellarum on the near (visible) side of the Moon, and has an extension of approximately 30 by 60 kilometres.

The AMIE camera obtained the images on 14 January 2006, from a distance between 1599 and 1688 kilometres and with a ground resolution between 144 and 153 metres per pixel.


From early ground-based observations, this feature was initially misidentified as a crater. Only later detailed observations from orbit (such as those performed by USSR’s Zond-6, and NASA’s Lunar Orbiter, Apollo and Clementine missions) revealed its true nature: a very unusual morphology, consisting of swirl-like patterns that do not correspond to any topographic features.

Its main part consists of a bright pattern of elliptical shape, located to the west of Reiner crater. Bright elongated patches extend to the northeast in the Marius Hills region and small swirls extend to the southwest. The origin of the Reiner Gamma Formation and other swirls occurring on the lunar surface is still unclear.

Lunar swirls are associated with magnetic anomalies and some of these swirls – such as Mare Ingenii and Mare Marginis - are ‘antipodal’ to large impact structures (that is they are located right into opposite regions of the Moon globe).

So, it was suggested that the Reiner Gamma swirls correspond to magnetized materials in the crust or iron-rich ejecta materials able to deflect the solar wind (constant flow of charged particles coming from the Sun). This would prevent surface materials to undergo maturation processes, and so produce an optical anomaly.

However, Reiner Gamma Formation still stands as a particular case. In fact, the magnetic anomaly does not correlate with the scale of the lunar crust structure and large-scale anomalies seen on the far side. Furthermore, the anomaly is not associated with any obvious antipodal basin structure, and the surface material related to Reiner Gamma appears optically very immature (the age for its emplacement could be quite recent).

The analysis of NASA’s Clementine imaging data showed that the optical and spectroscopic properties of the local regolithic surface layer are close to those of immature mare crater-like soils. This is consistent with the properties of a shallow subsurface mare soil layer.

Considerations from works on impact cratering support the hypothesis that the uppermost part of the regolith could have been modified through an interaction with falling fragments of a low-density comet nucleus, previously broken by tidal forces and having ploughed the regolith.

Then, the magnetic anomaly would not be the result of an antipodal crustal field generated in the formation process of large impact basins. It would rather arise from local effects during the interaction between the lunar surface and cometary physical environment, with the possibility that the solar wind is locally deflected and contributes to the unusual optical properties.

So, the Reiner Gamma Formation could be an interesting site for future human exploration because of the radiation deflected from the surface. Further testing of this hypothesis requires access to the physical properties of the surface to constrain the mechanisms of formation of the lunar swirls. This is an ongoing task for the AMIE camera, aimed at studying regolith photometric properties.

Bernard H. Foing | alfa
Further information:
http://www.esa.int/SPECIALS/SMART-1/SEM05FNFGLE_0.html

More articles from Physics and Astronomy:

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

nachricht Improving understanding of how the Solar System is formed
12.11.2018 | Goethe-Universität Frankfurt am Main

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>