Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bubble, bubble: Searching through the rubble of supernova remnants

05.04.2006


A study of supernova remnants – material blown out into space during death throes of giant stars – has shown that a bubble of gas enveloping our Solar System is being shoved backwards by the debris of another, more recent, supernova.



Over the last few million years, several stars have exploded within the Milky Way and they have left behind bubbles of expanding, hot gas that radiate low-energy X-rays. The Solar System sits within one of these shells, known as the “Local Hot Bubble”. A study using data from the XMM-Newton Space Telescope has shown that the “Loop 1 Superbubble”, the remnants of some more recent supernova explosions, is expanding faster than the Local Hot Bubble and is compressing an area of cool dense gas, known as the Wall, that lies between the two shells. Although astronomers have known for some time that the Local Hot Bubble has an hourglass shape, pressure and density measurements from this new study provide evidence that Loop 1’s compression of the Wall is causing the hourglass’s “waist”.

“The X-ray radiation from the bubbles is very faint. In order to see them, we’ve had to remove all the light from stars, nebulae and cosmic rays the images, leaving only the weak X-ray signal. It’s the astronomical equivalent of looking at an aquarium, ignoring the fish and looking only at the water,” said Michelle Supper, who is presenting the results at the RAS National Astronomy Meeting in Leicester on 5th April.


“We’ve taken long-exposure images of ten small areas of sky in the direction of the Loop 1 Superbubble, then removed all the bright objects and studied what’s left. Each structure emits a unique X-ray signal, like a fingerprint, that reflects its temperature and chemical composition. This means that, when we come to analyse the images, we can tell which bits of radiation originated from Loop 1, the Wall or the Local Hot Bubble,” Supper explained.

Together with Dr Richard Willingale, also from the University of Leicester, Supper developed mathematical models to represent each of the structures and then produced a geometrical model from which she could work out the distances to the structure boundaries and the pressure and density of the interstellar plasma within the structures.

Loop 1 is thought to be expanding because it is being inflated by winds originating from a group of stars known as the Scorpius-Centaurus Association. Supper’s measurements of physical properties of the Wall showed that its density increases fourfold, reaching a peak near the most indented region of the Local Hot Bubble. The pressures also peak around this point, indicating that the Wall is pushing into the bubble at in this region. The chemical analysis showed that the highest concentrations of gases are found at the centre of the Loop 1 Superbubble and levels decrease dramatically in the expanding shell of the bubble.

“Not many astronomers are looking at these structures at present but this study has shown there are many more mysteries to solve!” adds Supper. “We found that X-ray emissions in an area near the galactic plane are much higher in energy than expected but we don’t know yet whether we’ve discovered a new X-ray source or whether its an extension of the very high energy radiation coming from the centre of the galaxy. We hope that this study will also give us an insight into the distribution of the Galactic Halo, a mysterious X-ray signal that can be detected faintly above and below the disc of the Milky Way.

Anita Heward | alfa
Further information:
http://www.ras.org.uk/index.php?option=com_content&task=view&id=970

More articles from Physics and Astronomy:

nachricht Researchers discover link between magnetic field strength and temperature
21.08.2018 | American Institute of Physics

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>