Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant filament structures give a rare insight into galaxy cluster evolution

05.04.2006


A new image of the centre of a cluster of galaxies has revealed massive filamentary structures that give a rare insight into the evolution of galaxy clusters.



“The star forming regions in the cluster that we’d observed previously were just the tip of the iceberg. We’ve now observed filaments of gas streaming out from these regions that are approximately 490 thousand light years across. The gaseous trails mark the path of galaxies travelling at high speed through the cluster. The origin of these unique features is still a matter for debate, but we think the combined action of tidal forces among galaxies in the cluster and of ram-pressure by the ambient medium caused the galaxies to fragment and blast out the ionized gas,” said Dr Luca Cortese, who is presenting the results at the Royal Astronomical Society’s National Astronomy Meeting on 5th April.

An international team, lead by Dr Cortese, studied the physical properties of a compact group that is falling towards the centre of a cluster of galaxies known as Abell1367 at a rate of 1700 km/s. The group, which was discovered in 2002, has the highest density of star forming objects ever observed in local clusters. It contains two giant galaxies, at least ten dwarf galaxies or extragalactic clouds of gas and over a billion solar masses of diffuse gas filaments.


Scientists believe that clusters of galaxies are formed from the accretion of compact groups like the one observed in Abell1367. Formation of clusters of galaxies peaked 5 billion years ago. Now the rate is at least three times lower and it will slow dramatically due to the effects of the acceleration of the Universe. The Abell1367 group is particularly important as it is only 300 million light years from Earth – ‘local’ in terms of the Universe – and so the scientists can see the processes at work in unprecedented detail. Dr Cortese explains, “The physical processes seen here are typical of young clusters, found far away in space and a long time ago. To really understand what’s going on, we need a close up view. This is the first time we have found an example of a galaxy group mid-way through its transformation that is close enough for us to have a really good look at the structures surrounding the galaxies.”

The results suggest that at least part of the changes to the structure of cluster galaxies that took place in earlier epochs happened very differently to ones observed in today’s clusters. In today’s clusters of galaxies, the galaxies are travelling faster than in the infalling groups, which means that gravitational interactions between galaxies happen much faster.

The study was carried out using the Italian National Telescope Galileo in La Palma in April 2004 and February 2006.

The results of this study are accepted for publication on Astronomy and Astrophysics

Anita Heward | alfa
Further information:
http://goldmine.mib.infn.it/papers/preprocessing.html

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>