Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Massive Black Hole’s Missing Ring of Dust Baffles Astronomers

02.11.2001


Image: Gemini Observatory


Some galaxies may have torus envy, if a new study is any indication. The most sensitive imaging yet of nearby galaxy M87’s core reveals that the black hole residing there has either a nonexistent or much fainter ring of dust around it compared with its peers. Scientists had thought that these rings were key features of such highly energetic galaxies. The puzzling finding appears today in the Astrophysical Journal Letters.

The current model of active galaxies such as M87 posits that each one harbors at its center a black hole many millions or even billions of times more massive than our own sun, all packed into a space about the size of our solar system. A disk of gas and dust drawn in by the black hole pours x-rays and ultraviolet radiation outward, where they strike a cooler layer of material, the torus, making it glow in the infrared. Everything should get bigger as the black hole gets bigger, team member Eric Perlman of the University of Maryland comments.

But when the astronomers trained the Gemini North Telescope in Hawaii onto M87, scanning it for infrared emissions, they found evidence of at best a meager torus—one that, if there at all, is at least 1,000 times fainter than that of Centaurus A, another, less powerful active galaxy. "That was a big surprise, [to find out] it was that much fainter," Perlman says. "What I think this means is there’s a lot more variety in active galaxies than we thought." A previous study hinted that M87’s torus might be a little weak, he notes, but it didn’t have the sensitivity to confirm that.



At 50 million light-years away, M87 is the nearest active galaxy and therefore an astronomer’s first stop. Now study co-author Chris Packham of the University of Florida says, "We want to go out and survey more and more galaxies to see if this is a common feature, or a common nonfeature." If a number of galaxies are similar, he remarks, astrophysicists may have to revise their theories a bit.

JR Minkel | Scientific American
Further information:
http://www.sciam.com/news/

More articles from Physics and Astronomy:

nachricht Quantum gas turns supersolid
23.04.2019 | Universität Innsbruck

nachricht Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun
18.04.2019 | University of Warwick

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Proteins stand up to nerve cell regression

24.04.2019 | Life Sciences

New sensor detects rare metals used in smartphones

24.04.2019 | Life Sciences

Controlling instabilities gives closer look at chemistry from hypersonic vehicles

24.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>