Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

X-rays reveal 250,000 tonnes of water released by Deep Impact

04.04.2006


Over the weekend of 9-10 July 2005 a team of UK and US scientists, led by Dr. Dick Willingale of the University of Leicester, used NASA’s Swift satellite to observe the collision of NASA’s Deep Impact spacecraft with comet Tempel 1.



Reporting today (Tuesday) at the UK 2006 National Astronomy Meeting in Leicester, Dr. Willingale revealed that the Swift observations show that the comet grew brighter and brighter in X-ray light after the impact, with the X-ray outburst lasting a total of 12 days.

“The Swift observations reveal that far more water was liberated and over a longer period than previously claimed,” said Dick Willingale.


Swift spends most of its time studying objects in the distant Universe, but its agility allows it to observe many objects per orbit. Dr. Willingale used Swift to monitor the X-ray emission from comet Tempel 1 before and after the collision with the Deep Impact probe.

The X-rays provide a direct measurement of how much material was kicked up after the impact. This is because the X-rays were created by the newly liberated water as it was lifted into the comet’s thin atmosphere and illuminated by the high-energy solar wind from the Sun.

“The more material liberated, the more X-rays are produced,” explained Dr. Paul O’Brien, also from the University of Leicester.

The X-ray power output depends on both the water production rate from the comet and the flux of subatomic particles streaming out of the Sun as the solar wind. Using data from the ACE satellite, which constantly monitors the solar wind, the Swift team managed to calculate the solar wind flux at the comet during the X-ray outburst. This enabled them to disentangle the two components responsible for the X-ray emission.

Tempel 1 is usually a rather dim, weak comet with a water production rate of 16,000 tonnes per day. However, after the Deep Impact probe hit the comet this rate increased to 40,000 tonnes per day over the period 5-10 days after impact. Over the duration of the outburst, the total mass of water released by the impact was 250,000 tonnes.

One objective of the Deep Impact mission was to determine what causes cometary outbursts. A simple theory suggests that such outbursts are caused by the impact of meteorites on the comet nucleus. If this is the case, Deep Impact should have initiated an outburst.

Although the impact was observed across the electromagnetic spectrum, most of what was seen was directly attributable to the impact explosion. After 5 days, optical observations showed that the comet was indistinguishable from its state prior to the collision. This was in stark contrast to the X-ray observations.

The analysis of the X-ray behaviour by the Swift team indicates that the collision produced an extended X-ray outburst largely because the amount of water produced by the comet had increased.

“A collision such as Deep Impact can cause an outburst, but apparently something rather different from the norm can also happen,” said Dr. Willingale. “Most of the water seen in X-rays came out slowly, possibly in the form of ice-covered dust grains.”

Dr. Richard Willingale | alfa
Further information:
http://www.nam2006.le.ac.uk/index.shtml
http://www.star.le.ac.uk

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>