Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electrons ’in limbo’ seen for first time

16.03.2006


Two recent papers by Pitt physicist offer a deeper understanding of how electrons behave on surfaces, with applications in electronics and energy



Hrvoje Petek, University of Pittsburgh professor of physics and codirector of Pitt’s Gertrude E. and John M. Petersen Institute of NanoScience and Engineering (PINSE), has published two papers in recent weeks that literally illuminate how electrons behave on various surfaces.

In the first paper, Petek and Miroslav Nyvlt of Charles University in Prague explored the properties of metals under intense light--a situation "where the classical physics of electron emission from metals emerges from its quantum roots," says Petek. They found that when light of a certain energy and intensity is shone onto a metal surface, a few electrons in the metal become stuck on the surface (that is, they are neither emitted from nor reabsorbed into the metal). As Petek puts it, the electrons are "in limbo."


These electrons undergo the process of "total internal reflection"--a process well known for light, but observed by Petek and Nyvlt for the first time in electrons.

These findings, published in the March 3 issue of Physical Review Letters (PRL), could lead to the ability to transmit electrons, without scattering, over larger distances than previously possible. For example, electrons on the surface of carbon nanotubes could be excited to make "very small and very fast" transistors, Petek says.

"We anticipate that these elusive electrons will provide exquisite probes for how photons and electrons interact with metal surfaces," he adds.

In Petek’s second paper, published in the current issue of Science, he and Pitt Professor of Chemistry Kenneth Jordan, a PINSE researcher, make new progress toward extracting hydrogen from water using titanium dioxide as a catalyst.

In a May 2005 Science paper, Petek and Jordan presented their findings on the properties of water on the surface of titanium dioxide. In their current experiment, they used methanol instead of water, because they discovered that excited electrons last longer in methanol than in water, allowing chemical reactions to be observed.

This research shows how protons in methanol molecules move in such a way that they control the reabsorption of electrons into the titanium dioxide. Such motion, correlated between protons and electrons, is needed to convert light into chemical energy on solid surfaces, as well as by light-harvesting proteins.

PINSE is an integrated, multidisciplinary organization that brings coherence to the University’s research efforts and resources in the fields of nanoscale science and engineering. More information about PINSE can be found at www.nano.pitt.edu.

The work for the PRL paper was performed at the Max Planck Institute of Microstructure Physics in Halle, Germany, where Petek was an Alexander von Humboldt Senior Scholar and Nyvlt was the group leader. Other authors on the paper are Francesco Bisio, now at the University of Genoa; Jirka Franta, now at Charles University; and Jurgen Kirschner, director of the Max Planck Institute.

Karen Hoffmann | EurekAlert!
Further information:
http://www.nano.pitt.edu
http://www.pitt.edu

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>