Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultracold atoms produce long-sought quantum mix

16.03.2006


Unbalanced superfluid could be akin to exotic matter found in Quark Star

Rice University physicist Randall Hulet will discuss breakthrough efforts to create a long-sought quantum superfluid at a press conference at 2:30 p.m. today at the American Physical Society’s 2006 March Meeting.

In January, Hulet’s laboratory reported in the journal Science the observation of an elusive quantum state – a superfluid of fermions with mismatched numbers of dance partners. Despite more than 40 years of theoretical musings about what would occur in such a case, the result -- a cluster of matched pairs surrounded by a cloud of would-be dance partners -- was largely unexpected, and it has opened the door to several intriguing new avenues of investigation.



Hulet will discuss published findings and ongoing investigations today in room 334 of the Baltimore Convention Center.

Rice’s experiments offer physicists a new window into two of the most intriguing and least understood phenomena in physics – superconductivity and superfluidity.

In the bizarre and rule-bound world of quantum physics, every tiny speck of matter has something called "spin" -- an intrinsic trait like eye color -- that cannot be changed and which dictates, very specifically, what other bits of matter the speck can share quantum space with. Because of their spins, fermions are the most antisocial of quantum particles. But when they do get together, fermion pairings enable such wondrous things as superconductivity and superfluidity.

Both phenomena result from a change in the phase of matter. Anyone who has seen ice melt has seen matter change phases, and when electrons, atoms and other specks of matter change quantum phases, they behave just as differently as do ice and water in a glass.

Superconducting and superfluid phases of matter occur in fermions only when quantum effects become dominant. Because thermodynamic forces are typically so powerful that they overwhelm quantum interactions -- like loud music overwhelms the whisper of someone nearby -- superconductivity and superfluidity usually only occur in extreme cold.

In the Rice experiments, when temperatures drop to within a few billionths of a degree of absolute zero, fermions with equal but opposite spin become attracted to one another and behave, in some respects, like one particle. Like a couple on the dance floor, they don’t technically share space, but they move in unison. In superconductors, these dancing pairs allow electrical current to flow through the material without any resistance at all, a property that engineers have long dreamed of harnessing to eliminate "leakage" in power cables, something that costs billions of dollars per year in the U.S. alone.

The superconducting and superfluid phases are analogous except that superconductivity happens with particles carrying an electrical charge and superfluidity occurs in electrically neutral particles. In superfluids, fermionic pairing leads to a complete absence of viscosity – like a wave rippling back and forth in a swimming pool without ever diminishing.

"Conventional theory tells us superconductivity or superfluidity occurs only in the presence of an equal number of spin-up and spin-down particles," said Hulet, the Fayez Sarofim Professor of Physics and Astronomy. "Physicists have speculated for almost 50 years about what would happen if this condition were not met.

"Because of the pristine and controlled nature of ultracold atoms, we’re able to offer definitive evidence of what happens with mismatched numbers of spin-up and spin-down particles."

Ultracold experiments at temperatures just a few billionths of a degree above absolute zero are Hulet’s specialty. It’s only been technically possible to chill atoms to these temperatures for the past 10 years, but in that time, this ability has proved remarkably useful for testing the predictions of quantum mechanics and for exploring the properties of what physicists call "many-body phenomena," including superconductivity and superfluidity.

Hulet’s team cooled a mixture of fermionic lithium-6 atoms to about 30-billionths of a degree above absolute zero. That’s far colder than any temperature in nature -- even in deepest interstellar space -- and it’s sufficient to quell virtually all thermodynamic interaction in the atoms, leaving them subject to superfluid quantum pairing.

Using radio waves, Hulet’s team can alter the ratio of spin-up and spin-down atoms in the cooled sample with great precision. They have found that the superfluid is able to tolerate an excess of up to 10 percent unpaired fermions with no detrimental effects.

"The gas behaves as if it is still perfectly paired, which is quite remarkable given the excess of spin-up atoms," Hulet said. "This was unexpected, and it could signal a new, exotic form of pairing that may also occur in unconventional superconductors or in the quark soup that’s predicted to exist at the heart of the densest neutron stars."

In the largest neutron stars -- known as "quark stars" -- a mass about five times greater than the sun is pressed into a space smaller than the island of Manhattan. Some physics theorists believe gravity is so strong at the heart of these stars that it creates something called "strange matter," a dense superfluid of up quarks, down quarks and strange quarks.

Hulet’s team has also found that increasing the ratio of spin-up to spin-down atoms eventually causes a phase change. When unpaired spin-up atoms rise above 10 percent of the total sample, the unpaired loners are suddenly expelled, leaving a core of superfluid pairs surrounded by a shell of excess spin-up atoms.

Ben Stein | EurekAlert!
Further information:
http://www.rice.edu
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>