Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crater Lichtenberg and young lunar basalts tracked by SMART-1

03.03.2006


This animation, made from images taken by the Advanced Moon Imaging Experiment (AMIE) on board ESA’s SMART-1 spacecraft, illustrates a special pointing mode, the so-called ’target-tracking’ mode.



The images show crater Lichtenberg in the Oceanus Procellarum region on the Moon, centred on an area located at 66.8° West, 32.6° North.

The AMIE camera obtained the images from a distance of between 2064 and 2162 kilometres with a ground resolution of between approximately 186 and 195 metres per pixel. Most of the time, the SMART-1 spacecraft points exactly downwards to the Moon, so-called ’nadir-pointing’. This animation illustrates a pointing mode called the ’target-tracking’ mode.


As the spacecraft moves around the Moon, it is commanded to keep pointing at the same target for a certain period of time, even though it moves over the lunar surface faster than 900 metres per second (or 3260 kilometres per hour). In this particular case, the distance between the target and the spacecraft changes by 100 kilometres every six minutes.

The prominent crater in the lower right of the image is crater Lichtenberg, with a diameter of 20 kilometres. There is a height difference between inner crater floor and surrounding lava plain of 1300 metres.

The actual target of this observation was the ’ghost’ crater on the lower left of Lichtenberg. This is almost hidden by overflowed lava from Oceanus Procellarum. The SIR infrared spectrometer on board SMART-1 was measuring the composition of this area during these measurements.

This area is of high geological interest and it was selected for the study of the most recent lunar volcanism. It is thought to contain the youngest basalts on the lunar surface, with an age of about ’only’ 1000 million years.

From geological mapping, scientists know that there are very young basalts around crater Lichtenberg*, but how old are they really, and how long was lunar ‘mare’ volcanism active?

Recent data show that lunar volcanism was active for at least 2000 million years from 4000 million years ago, ceasing at about 2000 million years. In Oceanus Procellarum, it is thought that these basalts are the very youngest basalts on the lunar surface with an age of probably less than 1000 million years. This should be compared with the age of the Moon at about 4500 million years.

The first and last images have been used to create a 3D anaglyph image that can be viewed with red/green glasses (red on the left eye). Note that the crater floor actually lies below the surrounding lava plain. The USGS topographic map can be used to compare the heights.

Crater Lichtenberg is named after the German physicist Georg Christoph Lichtenberg (1742-1799), who was a professor at the University of Goettingen, Germany.

Bernard H. Foing | alfa
Further information:
http://www.esa.int/SPECIALS/SMART-1/SEMQ0SMVGJE_0.html

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>