Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From Quonset huts to ballerinas

24.01.2006


Princeton scientists solve a nanotech mystery

A team of Princeton researchers has untangled the mystery behind a puzzling phenomenon first observed more than a decade ago in the ultra-small world of nanotechnology.

Why is it, researchers wondered, that tiny aggregates of soap molecules, known as surfactant micelles, congregate as long, low arches resembling Quonset huts once they are placed on a graphite surface?



To fellow scientists and engineers, this question and the researchers’ answer is tantalizing since the discovery gives insight into "guided self-assembly," an important technique in nanotechnology where molecules arrange themselves spontaneously into certain structures. It may also one day lead to valuable technological applications such as the creation of anti-corrosion coatings for metals and bio-medical applications involving plaque formation with proteins.

In a paper appearing in the January 13 issue of Physical Review Letters, a premier physics journal, Dudley Saville, Ilhan Aksay, Roberto Car, and their colleagues explain how they unraveled the mystery.

The scientists discovered they and others had been operating on the flawed assumption that - in response to the texture of the graphite beneath them - surfactant molecules assembled themselves into static ’Quonset Hut’ shapes that stayed put.

Because of new atomic force microscope imaging done by research associate Hannes Schniepp, the Princeton scientists were able to see that the micelle structures were not static but, rather, constantly on the move, building and rebuilding themselves over and over again into the same structures.

To understand what the researchers discovered, it is helpful to switch metaphors. Now, rather than envisioning the molecular assemblies as static Quonset huts, think of them as ensembles of ballerinas in constant motion.

"We spent a year trying to describe why these rods orient themselves on the graphite surface," Saville said. "But it turns out that we had imaged the dancers in freeze-frame. What we did not take into account in our original thinking was that micelles on the surface are in constant rotary motion."

Under most conditions, small particles make tiny random movements known as Brownian motion. Powered by Brownian motion, a single surfactant can be thought of as a dancer spinning about on her own; it is impossible to predict the precise pattern of movement.

What the researchers discovered was that, when molecules assembled into a micelle and the micellar dancer moved on the graphite "stage," it did so in a choreographed fashion.

Something was overriding the rotary Brownian motion. What was it?

"Saville and his coauthors combined theory at the surfactant and micellar scales with a series of careful experiments to resolve the dilemma," said William Russel, the Arthur W. Marks ’19 professor of chemical engineering and dean of the graduate school at Princeton. "Long-range van der Waals forces, which are orientation-dependent, exert a torque on the entire micelle that is strong enough to overcome the randomizing tendency of Brownian motion."

Metaphorical translation: "When micelles appear on the graphite stage, they begin dancing to the music of a van der Waals orchestra," Saville said. The van der Waals interactions – weak links between the electron clouds of the micelles and the graphite below– make the micelles orient in specific directions. Basic work by research associates Je-Luen Li and Jaehun Chun provided a description of the angular variation of the van der Waals interaction and this enabled the group to close the loop.

The scientists said their work opens new horizons to explore. They still have not figured out, for example, how micelles interact with one another on the surface to form large patterned arrays. Or how the micelles disintegrate and reform in the same patterns.

"You need a critical number of dancers for this to happen but we have no idea how many," Aksay said. Moreover, he noted, the researchers can now move on to other interesting questions now that they know that the micelles are dynamic and understand the time frame in which they move. "This opens up the prospect for even more rigorous thinking."

Teresa Riordan | EurekAlert!
Further information:
http://www.princeton.edu

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>