Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

By straddling twin molecules, Sandia physicist obtains unique view of their breakup

20.01.2006


New view attained of electronic orbitals of separating molecules



Imagine you are standing, John Wayne style, on the backs of two runaway horses pulling a stagecoach. You try to bring the horses to a stop but instead the harnesses break, the horses separate, and an unlucky passenger gets thrown from the stage.

You learned, first, you are not John Wayne (because he always succeeded). But because you were standing at the heart of the action, you alone of all the bystanders saw exactly how the breakup occurred and how the passenger was ejected.


In work published in the current (Jan. 13) issue of Science, a team of scientists from Sandia National Laboratories (a National Nuclear Security Administration laboratory), the National Research Council in Ottawa, Canada, and elsewhere accomplished this trick scientifically by, in effect, standing on pair after pair of joined nitric oxide molecules (called NO dimers) and watching as each pair split after being excited by an ultrashort laser pulse.

They not only measured the direction of each separating NO molecule but also the direction and energy of an electron spat out as each breakup occurred. The electron reveals the quantum energy levels of the dimer as it separates - a key factor in analyzing the process.

By using a computer to calculate back from the final speeds and angles, the researchers could reconstruct the event to "see" the exact path the electron and each dimer fragment had taken, exactly as though they had ridden on the dimers as they split.

The detailed experimental results are expected to provide tests for computational methods used by chemists to describe complex chemical processes in combustion and atmospheric chemistry involving the NO molecule.

With previous experimental techniques, scientists usually watched these events from the sidelines, their points of view external to the reactions -- the so-called "laboratory frame of reference." Such methods can only average the results obtained from molecules oriented in all different directions, thus obscuring details of the reaction.

The new experiments reconstruct action from the molecules’ perspective -- the molecular frame of reference -- and yield a more detailed view of reactions. This provides a stringent test of theoretical calculations.

"For those using computing to predict what happens in chemical reactions, without actually doing the experiments, the NO dimer is a very challenging system to calculate," says Sandia team leader Carl Hayden.

Results showed that the dimers don’t come apart smoothly, as had formerly been thought, but go through an intermediate step. About 150 femtoseconds after the initiating pulse, a more diffuse but definite configuration known as a Rydberg state appears. That state dissociates in about 600 femtoseconds.

Understanding the dissociation process is not simple. "The number of possible electronic states is very large," says Carl. One purpose of the work is to determine which of these states are important during the dissociation.

The results were obtained by firing femtosecond (millionth of a nanosecond) laser excitation pulses at a beam of NO molecules made cold enough to allow NO dimers to form (about 20 degrees Kelvin). Firing only enough energy to disrupt one dimer with each laser pulse, researchers performed the experiments until as many as 500,000 dissociations had been observed.

A second femtosecond probe pulse, sent with a variable time delay after the excitation, ejected an electron from each dimer as it broke up, providing a "snapshot" of the progress of the dissociation.

The dimer fragments were analyzed by a tool developed at Sandia/California called a time-resolved, coincidence-imaging spectrometer. The spectrometer, which uses a flat detector, is able to capture electrons flying off in three dimensions through use of an electric field that bends the electrons’ flight toward the detector. "The ones that arrive latest have traveled the farthest from the point of ejection," says Carl. "The energy and angle is what we’re looking for."

A similar process is used to simultaneously measure velocities of the ions and hence the NO molecular fragments produced.

The work was funded by DOE’s Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.

Results were the product of an international collaboration. The measurements from the molecular perspective were done at Sandia, with complementary work to measure dimer intermediate state lifetimes achieved in Albert Stolow’s group at the Steacie Institute for Molecular Sciences, at the National Research Council of Canada. Quantum mechanical calculations were done by other groups in Canada and at he University of Southern California, while some of the modeling of the 3-D electron distributions was performed at the Open University in the United Kingdom.

Neal Singer | EurekAlert!
Further information:
http://www.sandia.gov/news-center/news-releases/2006/gen-science/orbital.html
http://www.sandia.gov

More articles from Physics and Astronomy:

nachricht New type of low-energy nanolaser that shines in all directions
18.12.2018 | Eindhoven University of Technology

nachricht NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate
18.12.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>