Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic spin details may lead to new devices

20.01.2006


An unusual pool of scientific talent at the U.S. Department of Energy’s Argonne National Laboratory, combined with new nanofabrication and nanocharacterization instruments, is helping to open a new frontier in electronics, to be made up of very small and very fast devices.


SPIN RESEARCH – Argonne researcher Sam Bader with a new instrument to measure spin resonance frequencies, developed by Argonne senior scientist Frank



A new discovery by this group opens a path to new computer technologies and related devices, and could drive entire industries into the future, the researchers say.

The researchers learned that swirling spin structures called magnetic vortices, when trapped within lithographically patterned ferromagnetic structures, behave in novel ways. In a nickel-iron alloy, the two vortices swirl in opposite directions, one clockwise and the other counterclockwise. However, the researchers discovered that the magnetic polarity of the central core of the vortices, like the eye of a hurricane, controlled the time-evolution of the magnetic properties, not the swirling direction.


The material being studied is about one micron in size, and the area of the vortex core is about 10 nanometers in size. For comparison, the period at the end of this sentence is about 100 microns or 100,000 nanometers in diameter.

Group leader Sam Bader, an Argonne scientist for more than 30 years, explained that the work could lead to the next generation of electronic devices. “When the first computer hard disk was introduced 50 years ago, it required a rather large size to store each bit of digital information. On today’s computer disks, the corresponding size is about one-50-millionth of that needed in the original disks. We are now moving well into the nanoscale range, and nanomagnetism is one of the real drivers of the nanotechnology field.”

The beauty of nanoscience, Bader said, is that researchers can take conventional materials, such as the nickel-iron alloy, reduce them to the nanoscale and create whole new properties. “Thinking far into the future, for example, we can envision circuits where the flow of spin, not the flow of electrical charge, will operate computers and other electronic devices while saving wasted heat energy that is generated in present-day devices.”

As with other materials at the nanoscale, Bader said, nanomagnets take on new properties, some of them unpredictable.

Understanding that unpredictability and underlying physics is important to researchers developing the new technology, said Argonne scientist Val Novosad. “With this very small array of spins, where each atom has a magnetic moment, the vortex core responds to stimuli by traveling in spiral trajectories.”

The researchers created the material in the form of an array of elliptical pancakes, each holding two vortex cores, stimulated the material with a magnetic pulse and watched the subsequent behavior.

“This first-ever reported experiment revealing unique dynamic behavior of two interacting magnetic vortices required a considerable assist from technology,” Novosad said.

Argonne senior scientist Marcos Grimsditch provided the inspiration for the novel magnetic configuration of the samples, which were fabricated using a new electron beam lithography facility to be housed at Argonne ’s Center for Nanoscale Materials, scheduled to open later this year. The tiny process could be monitored using a new instrument to measure spin resonance frequencies, developed by Argonne senior scientist Frank Fradin. And the interpretation of the experimental data was assisted by numerical modeling from Argonne post-doctoral student Kristen Buchanan, winner of a fellowship from Canada ’s Natural Science and Engineering Research Council, and the analytical theory expertise of visiting theorist Konstantin Guslienko at Argonne’s Theory Institute.

“Every step along the way was state of the art,” Bader said, “from the fabrication of the material to the measurement of the spin to the creation of software to illustrate the data through a movie.”

The research was reported in the new peer-reviewed journal,Nature Physics. The six Argonne researchers are co-authors of the article, along with Pierre Roy of Uppsala University in Sweden , a graduate student in residence at Argonne as part of his thesis research experience.

The nation’s first national laboratory, Argonne National Laboratory conducts basic and applied scientific research across a wide spectrum of disciplines, ranging from high-energy physics to climatology and biotechnology. Since 1990, Argonne has worked with more than 600 companies and numerous federal agencies and other organizations to help advance America’s scientific leadership and prepare the nation for the future. Argonne is managed by the University of Chicago for the U.S. Department of Energy’s Office of Science.

For more information, please contact Catherine Foster (630/252-5580 or cfoster@anl.gov) at Argonne.

Catherine Foster | EurekAlert!
Further information:
http://www.anl.gov

More articles from Physics and Astronomy:

nachricht ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres
13.08.2018 | Arizona State University

nachricht UT-ORNL team makes first particle accelerator beam measurement in six dimensions
13.08.2018 | DOE/Oak Ridge National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

NRL's sun imaging telescopes fly on NASA Parker Solar Probe

13.08.2018 | Physics and Astronomy

UT-ORNL team makes first particle accelerator beam measurement in six dimensions

13.08.2018 | Physics and Astronomy

ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres

13.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>