Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LISA and the search for Einstein’s waves

19.01.2006


Scientists from across the world came together in London on 12-13 January to review the scientific and technical status of the LISA mission, the world’s first gravitational wave observatory, at a meeting organised by the Royal Astronomical Society (RAS) and the Institute of Physics.



Scheduled for launch in 2016, LISA will be the largest scientific instrument ever constructed, consisting of three spacecraft, each separated by 5 million kilometres (3 million miles). Its task will be to detect the elusive gravitational waves which were predicted by Einstein’s Theory of General Relativity, published in 1916. To date, although astronomers have indirect evidence of their existence, none have yet been detected directly.

LISA will be one of the most challenging space science missions ever flown. In order to detect the passage of a gravitational wave, the distance between the spacecraft must be measured by laser beams to an accuracy of ten picometres, about one millionth of the diameter of a human hair!


Gravitational waves are emitted when very massive objects such as black holes spiral violently together or when neutron stars collide at high speed. These invisible waves squeeze and stretch spacetime as they travel to us from distant parts of the universe,

The waves travel from the source without absorption and this allows scientists to study objects at very great distances and the events that took place immediately after the birth of the Universe. Various models of the early universe predict gravitational wave emission during the first tiny fractions of a second, and if these can be detected by LISA scientists will learn a great deal about the processes active at that time.

The technology needed for gravitational wave detection in space is being developed in Europe and the US, with a major role being played by the UK. Groups at the Universities of Glasgow, Birmingham, Imperial College London and the Rutherford Appleton Laboratory have been working for over ten years to perfect the necessary instrumentation and a flight test of this hardware is planned for 2009 on a space mission called LISA Pathfinder.

In addition to the preparation of the advanced technology, 10 other UK Universities (Warwick, Oxford, Aberdeen, Lancaster, Cambridge, Southampton, Portsmouth, University College London, Nottingham and Cardiff) are currently working on predicting astronomical signals and testing data analysis methods ready for the data from LISA.

Speakers at the RAS-IOP meeting came from the US, Italy, Germany and many groups in the UK. To emphasise the UK support for the science goals of LISA, the meeting participants were welcomed by Professor Keith Mason, Chief Executive of PPARC who praised the scientific and technical challenges being addressed by the UK teams and pointed out that LISA fulfilled one of PPARC’s major science goals. The meeting was concluded by Professor David Southwood, the ESA Director of Science, who drew attention to the unique science that LISA would accomplish.

Prof. Mike Cruise | alfa
Further information:
http://www.ras.org.uk/
http://www.lisa.jpl.nasa.gov/
http://www.bham.ac.uk

More articles from Physics and Astronomy:

nachricht MSU astronomers discovered supermassive black hole in an ultracompact dwarf galaxy
14.08.2018 | Lomonosov Moscow State University

nachricht ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres
13.08.2018 | Arizona State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>