Comet dust brought back to Earth: paving the way for Rosetta

Scientists around the world eagerly await the arrival of sample particles from Comet Wild 2, which are being brought back to Earth by the US Stardust spacecraft on 15 January this year.


The NASA Stardust mission was launched over seven years ago and has travelled several thousand millions of kilometres in deep space, chasing Comet Wild 2.

In January 2004, the spacecraft encountered the comet to collect samples of particles ejected from its nucleus.

This was achieved with a sample canister containing cells filled with ‘Aerogel’, an extremely lightweight, porous material based on silicon technology, ideal for slowing down the fast-moving dust particles and collecting them. These particles are moving at ‘hypervelocities’, i.e. speeds of up to seven kilometres per second.

During the encounter with Wild 2, the canister was exposed to the cometary particles and then retracted inside the spacecraft and stored in its Sample Return Capsule. The spacecraft then began its two-year journey back to Earth to return carrying its precious cargo. Also a sample of interstellar dust was collected during the journey.

When we want to understand the origin and evolution of the Solar System, comets are among the most informative of its inhabitants. They formed four and a half thousand million years ago and have remained almost unchanged since then.

Studying them can provide important clues about the origin of the material out of which the Solar System formed, and could even help in understanding the origins of life on Earth.

“Missions like Stardust provide not only valuable data by the first-ever study in terrestrial laboratories of particles ejected from a known comet and collected in the very close vicinity to it,” said Gerhard Schwehm, ESA’s Rosetta Project Scientist.

“Results from such missions, which include ESA’s Giotto spacecraft to Comet Halley in 1986, are also very important for the preparation and fine-tuning of the scientific investigations on future cometary missions, such as the European comet-chaser Rosetta.”

Launched in 2004, Rosetta is now travelling on a long route around the Sun to rendezvous with Comet Churyumov-Gerasimenko in 2014 and deliver a lander onto its surface.

With Stardust, scientists will have access to information about particles collected from the ‘coma’, the halo of dust and gas surrounding the comet tail.

“These tiny particles, mostly micrometres in size, will be cut into even finer pieces and will be analysed with the very best instruments and at the highest level of detail for Earth-based labs,” continued Schwehm.

“With Rosetta, we will study the comet in situ in all its aspects – the tail, the coma and even the surface, the comet ‘mantle’. Instead of bringing the comet material to our laboratories, Rosetta will take the ‘laboratory’ to the comet.

“In particular, our sophisticated suite of instruments will allow us not only to fully characterise the comet’s particle content – chemical composition and other physical properties – but also the volatile content. This means we don’t potentially lose any of these properties during a transport back to Earth,” he adds.

“However, thanks to Stardust, the analysis of coma particles on Earth will provide the whole scientific community with an unprecedented close-up view. For instance, the analysis of the ‘isotopic ratio’ of the elements in the dust grains (finding the percentage and the nature of ‘decayed’ atoms in the dust) gives important information about where and how this material was formed,” concluded Schwehm.

Media Contact

Michel van Baal alfa

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

The Sound of the Perfect Coating

Fraunhofer IWS Transfers Laser-based Sound Analysis of Surfaces into Industrial Practice with “LAwave”. Sound waves can reveal surface properties. Parameters such as surface or coating quality of components can be…

Customized silicon chips

…from Saxony for material characterization of printed electronics. How efficient are new materials? Does changing the properties lead to better conductivity? The Fraunhofer Institute for Photonic Microsystems IPMS develops and…

Acetylation: a Time-Keeper of glucocorticoid Sensitivity

Understanding the regulatory mechanism paves the way to enhance the effectiveness of anti-inflammatory therapies and to develop strategies to counteract the negative effects of stress- and age-related cortisol excess. The…

Partners & Sponsors