Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multi-wavelength images help astronomers study star birth, death

12.01.2006


Black and white reproductions of Vincent van Gogh’s "The Starry Night" lack the beauty and depth of the original oil painting. In a similar fashion, images of stars and galaxies composed of a single wavelength band cannot convey the wealth of information now accessible to astronomers.


This false-color image shows infrared (red), optical (green), and X-ray (blue) views of the N49 supernova remnant. This object, the remains of an exploded star, has million-degree gas in the center, with much cooler gas at the outer parts of the remnant. Credit: NASA (SSC/HST/CXC), U.Illinois (R.Williams & Y.-H.Chu)


This false-color image shows infrared (red), optical (green), and X-ray (blue) views of the large star-forming complex N51. The warm ionized gas is shown in green, the hot ionized gas is in blue, and the proto-stars are primarily in red. Credit: NASA/SSC/MCELS/ESA/U.Illinois (Y.-H. Chu and R. A. Gruendl)



In recent years, a number of ground-based optical and radio surveys of the Large and Small Magellanic Clouds -- Earth’s nearest neighboring galaxies -- have become available. New composite images of optical, radio, infrared, ultraviolet and X-ray wavelengths are giving astronomers at the University of Illinois at Urbana-Champaign a clearer picture of the birth, life and death of massive stars, and their effect on the gas and dust of the interstellar medium surrounding them.

From their birth to their death, massive stars have a tremendous impact on their galactic surroundings. While alive, these stars energize and enrich the interstellar medium with their strong ultraviolet radiation and their fast stellar winds. As they die, shock waves from their death throes inject vast quantities of mechanical energy into the interstellar medium and can lead to the formation of future stars.


"Comparing images at different wavelengths lets us create a more complete picture, rather than seeing only a few features in isolation," said You-Hua Chu, chair of the astronomy department at Illinois. "Using multi-spectral data sets, we can examine the physical structure of the interstellar medium and study the conditions that lead to star formation."

Massive stars interact with the interstellar medium in many ways. Their fast stellar winds and supernova blasts can sweep up the surrounding medium into expanding shells filled with hot gas.

"The expanding shells produce conditions that may start a new wave of star births," said Robert Gruendl, an Illinois astronomer who uses Spitzer Space Telescope observations to search for proto-stars. "The combination of X-ray, optical and infrared observations allow us to determine whether the pressure of the hot gas or compression by a passing shock wave is responsible for triggering star formation."

In related work, Illinois astronomer Rosa Williams has added data from a new wavelength regime to her growing database on stellar graveyards in the Magellanic Clouds. Comparing infrared images obtained with the Spitzer Space Telescope, Williams explored the distribution of matter caught in the expanding shells of supernova remnants.

"We expected significant infrared emission to be generated by dust particles," Williams said. "Instead, most of the emission from these remnants came from heated gas."

Strong ultraviolet radiation from nearby star-forming regions may have ionized the gas and torn apart the dust particles consisting of hydrocarbon molecules, Williams said. "Other dust particles could have been shattered by shock waves from the supernova."

To solve the missing dust mystery, Williams said, "We are investigating the nature and amount of dust in regions surrounding the supernova remnants to see whether the deficiency in dust is inherent in the environment or created by the remnant."

Chu, Gruendl and Williams will present their latest findings at the American Astronomical Society meeting in Washington, D.C., on Wednesday (Jan. 11).

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht Kiel physicists discover new effect in the interaction of plasmas with solids
16.01.2019 | Christian-Albrechts-Universität zu Kiel

nachricht Understanding insulators with conducting edges
16.01.2019 | Goethe-Universität Frankfurt am Main

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

Im Focus: Programming light on a chip

Research opens doors in photonic quantum information processing, optical signal processing and microwave photonics

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Artificially produced cells communicate with each other: Models of life

17.01.2019 | Life Sciences

Velcro for human cells

16.01.2019 | Life Sciences

Kiel physicists discover new effect in the interaction of plasmas with solids

16.01.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>