Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring the Size of a Small, Frost World

05.01.2006


Stellar occultation allows VLT to determine Charon’s size and to put upper limit on its atmosphere



Observing a very rare occultation of a star by Pluto’s satellite Charon from three different sites, including Paranal, home of the VLT, astronomers were able to determine with great accuracy the radius and density of the satellite to the farthest planet. The density, 1.71 that of water, is indicative of an icy body with about slightly more than half of rocks. The observations also put strong constraints on the existence of an atmosphere around Charon.

Since its discovery in 1978, Charon and Pluto have appeared to form a double planet, rather than a planet-satellite couple. Actually, Charon is about twice as small as Pluto in size, and about eight times less massive. However, there have been considerable discussions concerning the precise radii of Pluto and Charon, as well as about the presence of a tenuous atmosphere around Charon.


In August 2004, Australian amateur astronomer Dave Herald predicted that the 15-magnitude star UCAC2 26257135 should be occulted by Charon on 11 July 2005. The occultation would be observable from some parts of South America, including Cerro Paranal, in the northern Atacama Desert, the location of ESO’s Very Large Telescope (VLT).

Stellar occultations have proved to be powerful tools to both measure sizes - at km-level accuracy, i.e. a factor ten better than what is feasible with other techniques - and detect very tenuous atmosphere - at microbar levels or less. Unfortunately, in the case of Charon, such occultations are extremely rare, owing to the very small angular diameter of the satellite on the sky: 55 milli-arcsec, i.e. the size of a one Euro coin observed from 100 km away!

This explains why only one occultation by Charon was ever observed before 2005, namely on 7 April 1980 by Alistair Walker, from the South Africa Astronomical Observatory.

Similarly, only in 1985, 1988 and 2002 could astronomers observe stellar occultations by Pluto. Quite surprisingly, the 2002 event showed that Pluto’s atmospheric pressure had increased by a factor of two in four years (ESO PHOT 21/02).

"Several factors, however, have boosted our odds for witnessing occultations of Charon," said Bruno Sicardy, from Paris Observatory (France) and lead author of the paper reporting the results. "First, larger telescopes now give access to fainter stars, thus multiplying the candidates for occultations. Secondly, stellar catalogues have become much more precise, allowing us to do better predictions. And, finally, the Pluto-Charon system is presently crossing the Milky Way, thereby increasing the likelihood of an occultation."

The July 2005 event was eventually observed from Paranal with Yepun, the fourth Unit Telescope of the VLT, equipped with the adaptive optics instrument NACO, as well as with the 0.5m "Campo Catino Austral Telescope" at San Pedro de Atacama (Chile), and with the 2.15m "Jorge Sahade" telescope at Cerro El Leoncito (Argentina).

An accurate timing of the occultation seen at the three sites provides the most accurate measurement of Charon’s size: its radius is found to be 603.6 km, with an error of the order of 5 km.

This accuracy now allows astronomers to pin Charon’s density down to 1.71 that of water, indicative of an icy body with about slightly more than half of rocks. Quite remarkably, Charon’s density is now measured with much more precision than Pluto’s.

Thanks to these observations, Sicardy and his collaborators could determine that if an tenuous atmosphere exists on Charon, linking it to the freezing ­‑220­ degrees centigrade or so surface, its pressure has to be less than one tenth of a millionth that at the surface of the Earth, or 0.1 microbar, assuming that it is constituted entirely of nitrogen.

A similar upper limit is derived for a gas like carbon monoxide. This is more than a factor one hundred smaller than Pluto’s surface pressure, which is estimated to be in the range 10-15 microbars.

"Comparing Pluto and Charon, we seem to cross a borderline between bodies which may have bound atmospheres - like Pluto - and airless bodies like Charon", said Olivier Hainaut, from ESO and member of the team.

The observations also indicate that methane ice, if present, should be restricted to very cold regions of the surface. Similarly, nitrogen ice would be confined at best to high northern latitudes or permanently shadowed regions of Charon.

As Pluto and its satellite sweep across the Milky Way, observations of more occultations will be tempted from the ground, while the NASA’s Pluto-Kuiper Belt Mission, to be launched in January 2006, will be travelling towards the planet, that it should reach in July 2015.

A report of these results is to be published in the January 5, 2006 issue of Nature ("Charon’s size and upper limit on its atmosphere from a stellar occultation", by B. Sicardy, A. Bellucci, E. Gendron, F. Lacombe, S. Lacour, J. Lecacheux, E. Lellouch, S. Renner, S. Pau, F. Roques, T. Widemann, F. Colas, F. Vachier, N. Ageorges, O. Hainaut, O. Marco, W. Beisker, E. Hummel, C. Feinstein, H. Levato, A. Maury, E. Frappa, B. Gaillard, M. Lavayssière, M. Di Sora, F. Mallia, G. Masi, R. Behrend, F. Carrier, O. Mousis, P. Rousselot, A. Alvarez-Candal, D. Lazzaro, C. Veiga, A.H. Andrei, M. Assafin, D.N. da Silva Neto, R. Vieira Martins, C. Jacques, E. Pimentel, D. Weaver, J.-F Lecampion, F. Doncel, T. Momiyama, and G. Tancredi).

Contacts
Bruno Sicardy
Paris Observatory, France
Mobile: +33-(0)6-19 41 26 15
Email: Bruno.Sicardy@obspm.fr

Olivier Hainaut
ESO, Chile
Phone: +56 55 43 5336 or +56 2 463 3118
Email: ohainaut@eso.org

Henri Boffin | EurekAlert!
Further information:
http://www.eso.org/outreach/press-rel/pr-2006/pr-02-06.html
http://www.eso.org

More articles from Physics and Astronomy:

nachricht Tangled magnetic fields power cosmic particle accelerators
14.12.2018 | DOE/SLAC National Accelerator Laboratory

nachricht In search of missing worlds, Hubble finds a fast evaporating exoplanet
14.12.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>