Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AMBER looks into the cradle of planets

29.11.2005


International team of astronomers uses a new infrared interferometer at the VLT to get surprising views of cosmic disks of dust and gas



A research team investigated a disk of gas and dust surrounding a young star, as well as the stellar winds which emanate from that star. The team found unique, previously unknown characteristics of the innermost environment around the star. Another research group carried out the first-ever analysis of the gas and dust material surrounding a "supergiant" star. All of the observations have now been published in the renowned journal Astronomy & Astrophysics.

In order to investigate the immediate environment of a young star with unprecedented accuracy, an international team of researchers led by Fabien Malbet of the University of Grenoble used two telescopes of the Very Large Telescope Interferometer (VLTI) of the European Southern Observatory (ESO), which is located on the Cerro Paranal mountain in Chile. Each of the huge telescope mirrors has a diameter of 8.2 metres; the distance between them is 47 meters. Both telescopes took pictures in the infrared spectral range of the young star MWC 297. Combining these infrared images in the central VLTI beam combination laboratory provides a very high angular resolution. This technique is known as infrared interferometry. The new interferometric instrument AMBER at the VLTI allowed both, the interferometric combination of images from both telescopes and the spectroscopic decomposition of the light.


The observation and analysis of the young star MWC 297 is one of the first results of the new AMBER instrument. It showed that MWC 297 is surrounded by a huge disk of dust and gas, known as an accretion disk. The disk emits radiation of many different wavelengths within the infrared range. The star also has an intense stellar wind blowing out at high speed. In the infrared range, the wind only radiates the light of a single hydrogen emission line, the Brackett-gamma line. AMBER made it possible to measure both components of the light separately and thus, for the first time ever, to determine the physical extent of both the accretion disk and the stellar wind. The disk’s infrared radiation is produced in a region with a size of 1.75 Astronomical Units. One Astronomical Unit represents the distance from the earth to the sun: 150 million kilometers. The stellar wind’s hydrogen light, on the other hand, comes from a considerably larger area of about 2.5 astronomical units.

The scientists used a new modelling method to evaluate the measured data, interpreting their observations of both the accretion disk and the stellar wind. The star emits the stellar wind’s ionised gas in almost all spatial directions. Although the gas near the disk moves at an expansion velocity of only 60 kilometers per second, the stellar wind in the direction of the poles blows at up to 600 kilometers per second. With AMBER, scientists can investigate the physical properties of dust and gas in the immediate vicinity of stars with the highest resolution ever. These are the regions where planets form and we can get entirely new information about conditions underlying the process.

The second AMBER research project, led by Armando Domiciano de Souza at the Max Planck Institute for Radio Astronomy in Bonn, involved combining light from three of the four large 8.2 meter telescopes at the VLTI. Instead of a young star, the observed object was a massive, evolved star named CPD-57°2874. This "supergiant star" is about 10,000 times more luminous and about 50 times larger than our sun. At a distance of 8,000 light years, it is some 10 times further from the Earth than MWC 297. AMBER’s detailed observations of this star have contributed to a better understanding of the physical properties of the material in its environment.

The AMBER interferometric instrument was built for ESO by an international consortium which includes the following institutions: Laboratoire Universitaire d’Astrophysique de Nice, Laboratoire d’Astrophysique de l’Observatoire de Grenoble, Laboratoire Gemini de l’Observatoire de la Cote d’Azur, Max Planck Institute for Radio Astronomy in Bonn, and Osservatorio Astrofisico di Arcetri in Florence. The Principal Investigator of the project is Romain Petrov at the University of Nice.

The development of the infrared camera and the data recording software was led by Professor Gerd Weigelt, Director of the Max Planck Institute for Radio Astronomy in Bonn.

Prof. Gerd Weigelt | EurekAlert!
Further information:
http://www.mpifr-bonn.mpg.de

More articles from Physics and Astronomy:

nachricht New Insight into Molecular Processes
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Exoplanet stepping stones
21.11.2018 | W. M. Keck Observatory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>