Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Was Einstein’s ’biggest blunder’ a stellar success?

23.11.2005


New supernovae study offers tantalyzing clues about dark energy

The genius of Albert Einstein, who added a "cosmological constant" to his equation for the expansion of the universe but later retracted it, may be vindicated by new research.

The enigmatic dark energy that drives the accelerating expansion of the universe behaves just like Einstein’s famed cosmological constant, according to the Supernova Legacy Survey (SNLS), an international team of researchers in France and Canada that collaborated with large telescope observers at Oxford, Caltech and Berkeley. Their observations reveal that the dark energy behaves like Einstein’s cosmological constant to a precision of 10 per cent.



"The significance is huge," said Professor Ray Carlberg of the Department of Astronomy and Astrophysics at U of T. "Our observation is at odds with a number of theoretical ideas about the nature of dark energy that predict that it should change as the universe expands, and as far as we can see, it doesn’t." The results will be published in an upcoming issue of the journal Astronomy & Astrophysics.

"The Supernova Legacy Survey is arguably the world leader in our quest to understand the nature of dark energy," said study co-author Chris Pritchet, a professor of physics and astronomy at the University of Victoria in British Columbia, Canada.

The researchers made their discovery using an innovative, 340-million pixel camera called MegaCam, built by the Canada-France-Hawaii Telescope and the French atomic energy agency, Commissariat à l’Énergie Atomique. "Because of its wide field of view -- you can fit four moons in an image -- it allows us to measure simultaneously, and very precisely, several supernovae, which are rare events," said Pierre Astier, one of the scientists with the Centre National de la Recherche Scientifique (CNRS) in France.

"Improved observations of distant supernovae are the most immediate way in which we can learn more about the mysterious dark energy," adds Richard Ellis, a professor of astronomy at the California Institute of Technology. "This study is a very big step forward in quantity and quality."

Study co-author Saul Perlmutter, a physics professor at the University of California, Berkeley, says the findings kick off a dramatic new generation of cosmology work using supernovae. "The data is more beautiful than we could have imagined 10 years ago -- a real tribute to the instrument builders, the analysis teams and the large scientific vision of the Canadian and French science communities."

The SNLS is a collaborative international effort that uses images from the Canada-France-Hawaii Telescope, a 3.6-metre telescope atop Mauna Kea, a dormant Hawaiian volcano. The current results are based on about 20 nights of data, the first of over nearly 200 nights of observing time for this project. The researchers identify the few dozen bright pixels in the 340 million captured by MegaCam to find distant supernovae, then acquire their spectra using some of the largest telescopes on earth--the Frederick C. Gillett Gemini North Telescope on Mauna Kea, the Gemini South Telescope on the Cerro Pachón mountain in the Chilean Andes, the European Southern Observatory Very Large Telescopes (VLT) at the Paranal Observatory in Atacama, Chile, and the Keck telescopes on Mauna Kea. The SNLS is one component of a massive 500-night program of imaging being undertaken as the CFHT Legacy Survey. "Only the world’s largest optical telescopes -- those from eight to 10 metres in diameter -- are capable of studying distant supernovae in detail by examining the spectrum," said Isobel Hook, an astronomer in the Department of Astrophysics at Oxford University.

The current paper is based on about one-tenth of the imaging data that will be obtained by the end of the survey. Future results are expected to double or even triple the precision of these findings and conclusively solve several remaining mysteries about the nature of dark energy.

Nicolle Wahl | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>