Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Star on the Run

10.11.2005


Speeding Star Observed with VLT Hints at Massive Black Hole


Star Ejected from the Large Magellanic Cloud (Artist’s Impression)



Using ESO’s Very Large Telescope, astronomers [1] have recorded a massive star moving at more than 2.6 million kilometres per hour. Stars are not born with such large velocities. Its position in the sky leads to the suggestion that the star was kicked out from the Large Magellanic Cloud, providing indirect evidence for a massive black hole in the Milky Way’s closest neighbour. These results will soon be published in the Astrophysical Journal Letters [2].

“At such a speed, the star would go around the Earth in less than a minute!”, says Uli Heber, one of the scientists at the Dr. Remeis-Sternwarte (University of Erlangen-Nürnberg, Germany) and the Centre for Astrophysics Research (University of Hertfordshire, UK) who conducted the study.


The hot massive star, (named HE 0437-5439), was discovered in the framework of the Hamburg/ESO sky survey far out in the halo of the Milky Way, towards the Doradus Constellation (“the Swordfish”).

“This is a rather unusual place for such a star: massive stars are ordinarily found in the disc of the Milky Way”, explains Ralf Napiwotzki, another member of the team. “Our data obtained with the UVES instrument on the Very Large Telescope, at Paranal (Chile), confirm the star to be rather young and to have a chemical composition similar to our Sun.”

The data also revealed the high speed of the star, solving the riddle of its present location: the star did not form in the Milky Way halo, but happens to be there while on its interstellar – or intergalactic – travel.

“But when we calculated how long it would take for the star to travel from the centre of our Galaxy to its present location, we found this to be more than three times its age”, says Heber. “Either the star is older than it appears or it was born and accelerated elsewhere”, he adds.

As a matter of fact, HE0457-5439 lies closer to one of the Milky Way satellite galaxies, the Large Magellanic Cloud, located 160,000 light-years away from us. The astronomers find it likely for the star to have reached its present position had it been ejected from the centre of the LMC. This could imply the existence of a massive black hole inside the LMC, in order to have imparted the speeding star the necessary kick.

Another explanation would require the star to be the result of the merging of two stars. In this case, the star could be older that presently thought, giving it time to have travelled all the way from the Milky Way Centre. This scenario, however, requires quite some fine-tuning. The astronomers are now planning new observations to confirm one of the two scenarios.

The full text of this ESO Press release 27/05 and the associated artist’s impression is available at http://www.eso.org/outreach/press-rel/pr-2005/pr-27-05.html

Notes

[1] The astronomers are Heinz Edelmann (Dr. Remeis-Sternwarte of the University of Erlangen-Nürnberg, Germany, now at University of Texas, Austin, USA), Ralf Napiwotzki (Centre for Astrophysics Research, University of Hertfordshire, UK), Uli Heber (Dr. Remeis-Sternwarte of the University of Erlangen-Nürnberg, Germany), Norbert Christlieb and Dieter Reimers (Hamburger Sternwarte, Germany).

[2] The paper “HE 0437-5439 – an unbound hyper-velocity main-sequence B-type star” by H. Edelmann et al., will appear in a few weeks in Astrophysical Journal Letters.

Henri Boffin | alfa
Further information:
http://www.eso.org/outreach/press-rel/pr-2005/pr-27-05.html

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>