Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space concepts improve life in the desert

21.10.2005


An innovative tent, developed with the use of space concepts, is now on display at the ’SAFE: Design On Risk’ exhibition at The Museum of Modern Art in New York. Designed for desert use, it exploits the inhospitable environment to improve life in the desert.



Called Desert Seal, the tent is a prototype for a one-person inflatable tent for use in desert conditions. It is light, easy to transport and simple to set-up. Best of all, it takes advantage of the extreme desert temperatures to make travelling in the desert more comfortable.

“Desert Seal is the result of a study on the use of inflatable technologies in hot and extreme environments carried out for ESA’s Technology Transfer Programme. We looked at different solutions and tent sizes,” says Andreas Vogler from Switzerland, who together with Arturo Vittori from Italy created Desert Seal.


“Rather than using specific space technologies, Desert Seal is derived from the methodology and principles used in space design and development. To design habitation for humans on Mars, completely autonomous solutions must be found. How can a construction be extremely light and easy to transport? How can the surrounding environment be controlled?”

The architects Vogler and Vittori started by analysing a hot desert environment and working out how these conditions could be used to create living quarters that are cool during the day yet protect against the cool desert nights.

“Designing habitats for space makes architects think about how they could also be used on Earth. Desert Seal is based on a research-driven design methodology, which investigates available in-situ resources and optimises designs to ensure they are light and have the minimum of energy requirements,” emphasises Vogler.

Innovative tent for desert nomads

In 2003, Vittori and Vogler set up Architecture and Vision, a design company based in Munich and London that focuses on product design and extreme environment architecture. Both have a background in aerospace architecture design and this can be seen in the conception and construction of the project. Vittori worked as an architect at Airbus in Toulouse and Vogler has carried out research in space architecture for the International Space Station and the Human Mars Mission at the University of Technology in Munich.

They designed Desert Seal specifically for hot arid environments where the air becomes considerably cooler the more distant it is from the Earth’s surface. During the day, the temperature can easily reach 60°C and beyond at ground level, while just 3 metres above it could be 40°C lower. Vittori and Vogler decided to use this characteristic to their advantage.

During the day, an electric fan in the top of the tent, 2.26 m above the ground, constantly blows cooler air inside, thus reducing the temperature inside the tent. The fan is powered by batteries charged by a flexible solar panel mounted outside the tent.

During the night, the desert radiates heat off to space and quickly reaches temperature below zero degree Celsius. Since air acts as a good insulator, on higher levels it stays considerably warmer. The fan on top now runs on batteries and blows warmer air into the tent, protecting from the chilly desert nights.

The tent consists of an air beam structure made of polyethylene-coated material. It has an awning in silver-coated high-strength textile to reflect the heat and provide protection from direct sunshine. The L-shaped tent allows upright entry and also minimises the aerodynamic load.

To make the tent, a number of space-related applications have been ‘borrowed’ from the aerospace industry such as the methods used to make parachutes, emergency inflatable objects and the flexible solar power panels that generate electricity. The Italian company Aero Sekur provided the technology and manufacturing skills to build the prototype. The Flexcell solar panel was developed by VHF-Technologies in Switzerland. Low volume and weight, inflatable construction for easy deployment, active environmental control and heat reflection are also key concepts and technologies transferred from the aerospace industry.

“However, the main spin-off from space used to create Desert Seal is not the use of clever new materials or the use of an elaborated software simulation, but the way a ‘space architect’ employs a research-based methodology,” explains Andreas Vogler.

SAFE: Design Takes On Risk exhibition

Desert Seal will be on display at The Museum of Modern Art, New York, in the ’SAFE: Design Takes On Risk’ exhibition until 2 January 2006. The exhibition features more than 300 contemporary design objects and prototypes from all over the world. These range from protecting body and mind from dangerous or stressful circumstances to designs that provide a sense of comfort and security.

Pierre Brisson | alfa
Further information:
http://www.esa.int/SPECIALS/Technology_Transfer/SEM0TB6Y3EE_0.html

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Pollen taxi for bacteria

18.07.2018 | Life Sciences

Biological signalling processes in intelligent materials

18.07.2018 | Life Sciences

Study suggests buried Internet infrastructure at risk as sea levels rise

18.07.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>