Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Like fireflies and pendulum clocks, nano-oscillators synchronize their behavior


Like the flashing of fireflies and ticking of pendulum clocks, the signals emitted by multiple nanoscale oscillators can naturally synchronize under certain conditions, greatly amplifying their output power and stabilizing their signal pattern, according to scientists at the Commerce Department’s National Institute of Standards and Technology (NIST).

A simulation made with NIST micromagnetic software shows the interaction of "spin waves" emitted by two nano-oscillators that generate microwave signals. The ability of these tiny spintronic devices to spontaneously synchronize their emissions may lead to smaller, cheaper wireless communications components.
Image credit: National Institute of Standards and Technology

In the Sept. 15 issue of Nature,* NIST scientists describe "locking" the dynamic magnetic properties of two nanoscale oscillators located 500 nanometers apart, boosting the power of the microwave signals given off by the devices. While an individual oscillator has signal power of just 10 nanowatts, the output from multiple devices increases as the square of the number of devices involved. The NIST work suggests that small arrays of 10 nano-oscillators could produce signals of 1 microwatt or more, sufficient for practical use as reference oscillators or directional microwave transmitters and receivers in devices such as cell phones, radar systems and computer chips.

"These nanoscale oscillators could potentially replace much bulkier and expensive components in microwave circuits," says Matthew Pufall, one of the NIST researchers. "This is a significant advance in demonstrating the potential utility of these devices."

The NIST-designed oscillators consist of a sandwich of two magnetic films separated by a non-magnetic layer of copper. Passing an electrical current through the device causes the direction of its magnetization to switch back and forth rapidly, producing a microwave signal. The circular devices are 50 nanometers in diameter, about one-thousandth of the width of a human hair and hundreds of times smaller than the typical microwave generators in commercial use today. The devices are compatible with conventional semiconductor technology, which is expected to make them inexpensive to manufacture.

The type of signal locking observed at NIST was first described by the 17th-century Dutch scientist Christiaan Huygens, who found that two pendulum clocks mounted on the same wall synchronized their ticking, thanks to weak coupling of acoustic signals through the wall. This phenomenon also occurs in many biological systems, such as the synchronized flashing of fireflies, the singing of certain crickets, circadian rhythms in which biological cycles are locked to the sun, and heartbeat patterns linked to breathing speed. There are also examples in the physical sciences, such as the synchronization of the moon’s rotation with respect to its orbit about the Earth.

Locking is already exploited in many technologies, such as wireless communications and certain types of antenna networks. For instance, in many telecommunications schemes, a receiver oscillator must lock to a signal transmitted by a sender.

The work described in Nature is an advance in the field of "spintronics," which takes advantage of the fact that the individual electrons in an electric current behave like minuscule bar magnets, each having a "spin" along a particular direction, analogous to a magnet’s north or south pole. Conventional electronics, by contrast, relies on the electrons’ charge. Spintronics is already exploited in read heads for computer hard-disk drives and may provide new functionalities in a variety of other electronic devices.

When an electric current passes through the NIST oscillators, the electrons in the current align their spins to match the orientation of the first magnetic layer in the device. When the now-aligned electrons flow through the second magnetic layer, the spin of the electrons is transferred to the film. The result is that the magnetization of the film oscillates much like a spinning top. The oscillation generates a microwave signal, which can be tuned from less than 5 gigahertz (5 billion oscillations a second) to more than 35 gigahertz by manipulating the current or an external magnetic field. In contrast, most cell phones transmit and receive signals at frequencies between 1 and 2 gigahertz.

Scientists long have known that an oscillator can be forced to sympathetically synchronize to an applied signal that is close to its own frequency. That is, if small, periodic "nudges" are applied to an oscillator, eventually it will synchronize to those nudges. In the latest NIST experiments, certain combinations of currents applied to both oscillators cause their respective frequencies to approach each other and eventually lock together.

In a related paper published Aug. 5 in Physical Review Letters,** the NIST research group demonstrated that nano-oscillators can be locked to an externally applied signal. This work also showed how to vary the phase of the oscillation (the positions of the peaks and troughs of the wave pattern), a technique used in radar and directional transmissions. "This work suggests the interesting possibility of using the oscillators for ’nano-wireless’ communications within or between chips on a circuit board," says William Rippard, a member of the NIST group.

NIST scientists are still studying exactly why locking occurs between nano-oscillators. One possible mechanism is the emission of "spin waves," the magnetic analog of waves in the ocean. In magnetic systems these waves are alternating variations in the direction of the magnetization. The waves created by the two oscillators may overlap and synchronize. Alternatively, each oscillator can be thought of as a bar magnet spinning around its midpoint or end over end. Attractive and repulsive forces between the devices’ poles may cause them to spin in a complementary pattern, thereby synchronizing the oscillations.

Laura Ost | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Researchers discover link between magnetic field strength and temperature
21.08.2018 | American Institute of Physics

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>



Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Science & Research
Overview of more VideoLinks >>>