Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny avalanche photodiodes target bioterrorism agents

14.09.2005


After the anthrax attacks in the United States in 2001 the threat of a larger and more deadly bioterrorism attack -- perhaps from smallpox, plague or tularemia -- became very real. But the ability to detect such biological agents and rapidly contain an attack is still being developed.



In a significant finding, researchers at Northwestern University’s Center for Quantum Devices have demonstrated solar-blind avalanche photodiodes (APDs) that hold promise for universal biological agent detection. Once optimized, these sensitive detectors could be combined with the ultraviolet light-emitting diodes (LEDs) already pioneered by the Center for Quantum Devices to create an inexpensive detection system capable of identifying the unique spectral fingerprints of a biological agent attack.

The Northwestern team, led by center director Manijeh Razeghi, became the first to demonstrate 280 nanometer APDs. These devices, based on aluminum gallium nitride (AlGaN) compound semiconductors, have a photocurrent gain of more than 700.


The tiny-sized APDs should be capable of efficient detection of light with near single photon precision. Previously, photomultiplier tubes (PMTs) were the only available technology in the short wavelength UV portion of the spectrum capable of this sensitivity. These fragile vacuum tube devices are expensive and bulky, hindering true systems miniaturization.

The APD technology may see further use in the deployment of systems for secure battlefield communication. Wavelengths around 280 nanometers are referred to as the solar-blind region; in this region, the UV light is filtered out by the ozone layer providing for a naturally low background signal. Solar-blind APDs are intrinsically able to take advantage of this low background level, while PMTs must use external filters to become solar-blind. This makes secure battlefield communication possible utilizing a combination of compact, inexpensive UV LEDs and UV APDs both developed at the Center for Quantum Devices.

The technology for the realization of solar-blind APDs is based on wide bandgap AlGaN compound semiconductors. To date, no semiconductor-based solar-blind APDs have been reported. This is due to numerous difficulties pertaining to the crystal growth of AlGaN compound semiconductors.

The major obstacle in demonstrating high performance solar-blind APDs is the high number of crystalline defects present in the AlGaN semiconductor material. However, researchers at the Center for Quantum Devices have been able to realize high-quality AlGaN so as to demonstrate avalanche gain in the solar-blind region.

Northwestern’s results were presented recently by Razeghi at the APD workshop organized by Henryk Temkin, a new program manager at the Defense Advanced Research Projects Agency (DARPA).

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>