Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Most Distant Cosmic Explosion Smashes Previous Record

13.09.2005


Scientists using the NASA Swift satellite and several ground-based telescopes have detected the most distant explosion yet: a gamma-ray burst from the edge of the visible Universe.



This powerful burst, probably marking the death of a massive star as it collapsed into a black hole, was detected on 4th September 2005. The burst comes from an era soon after stars and galaxies first formed, less than a billion years after the Big Bang.

"How a single star could generate so much energy as to be seen across the entire Universe remains an unanswered question," said Dr Nial Tanvir from the University of Hertfordshire, who joined with other scientists on four continents in using a multitude of telescopes to track the burst and its afterglow for days as the burst gradually faded. "The fact that we can see it may now provide us with a new tool to help understand those very early times."


"This is uncharted territory," said Dr. Daniel Reichart of the University of North Carolina at Chapel Hill, who spearheaded the distance measurement. "This burst smashes the old distance record by 500 million light years. We are finally starting to see the remnants of some of the oldest objects in the Universe."

To date, only one quasar has been discovered further out in the Universe. Yet whereas quasars are supermassive black holes containing the mass of billions of stars, this burst comes from a single star.

The discovery is being heralded as a major breakthrough in the study of the early Universe. "The hunt is now on for further such bursts which we hope to be able to use as cosmic lighthouses to discover the state of the universe at a time when the first stars had only recently turned on," said Andrew Levan, another team member from the University of Hertfordshire.

Scientists measure cosmic distances via redshift, the extent to which light is "shifted" towards the red (lower energy) part of the electromagnetic spectrum during its long journey across the universe. The greater the distance, the higher the redshift.

The 4th September burst, named GRB 050904 for the date it was detected, had a redshift of 6.29, which translates to a distance of about 13 billion light years from Earth. (The Universe is thought to be 13.7 billion years old.) The previous most distant gamma-ray burst had a redshift of 4.5. The most distant quasar known is at redshift 6.4.

Swift, a joint US/UK/Italian mission, detected GRB 050904 and relayed its coordinates to scientists around the world within
minutes. Gamma-ray bursts disappear quickly, which is why Swift was designed to autonomously detect and locate bursts and notify the science community via e-mail, Web sites and even mobile phone text messages.

The team discovered the afterglow with the SOAR (Southern Observatory for Astrophysical Research) telescope atop Cerro Pachon, Chile, and soon after it was picked up by the United Kingdom Infrared Telescope in Hawaii. Over the next several nights, these results were combined with further observations from the Gemini South telescope, also on Cerro Pachon, to calculate a redshift of greater than 6 via a light filtering technique.

Building upon all this information, a team led by Nobuyuki Kawai of the Tokyo Institute of Technology used the Subaru Observatory on Mauna Kea, Hawaii, to confirm the distance and fine-tune the redshift measurement to 6.29 via a technique called spectroscopy.

"We designed Swift to look for faint bursts coming from the edge of the Universe," said Dr. Neil Gehrels of NASA Goddard Space Flight Center, Greenbelt, Md., Swift principal investigator. "Now we’ve got one and it’s fascinating. For the first time we can learn about individual stars from near the beginning of time. There are surely many more out there."

Anita Heward | alfa
Further information:
http://www.ras.org.uk

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>