Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water detection at Gusev crater described

08.09.2005


Chemical proof for two wet scenarios


This mini-panorama was taken by Spirit on Aug. 23, 2005, just as the rover finally completed its intrepid climb up "Husband Hill." The summit appears to be a windswept plateau of scattered rocks, little sand dunes and small exposures of outcrop.



A large team of NASA scientists, led by earth and planetary scientists at Washington University in St. Louis details the first solid set of evidence for water having existed on Mars at the Gusev crater, exploration site of the rover Spirit.

Using an array of sophisticated equipment on Spirit, Alian Wang, Ph.D., Washington University senior research scientist in earth and planetary sciences in Arts & Sciences, and the late Larry A. Haskin, Ph.D., Ralph E. Morrow Distinguished University Professor of earth and planetary sciences, found that the volcanic rocks at Gusev crater near Spirit’s landing site were much like the olivine-rich basaltic rocks on Earth, and some of them possessed a coating rich in sulfur, bromine, chlorine and hematite, or oxidized iron. The team examined three rocks and found their most compelling evidence in a rock named Mazatzal.


The rock evidence indicates a scenario where water froze and melted at some point in Martian history, dissolving the sulfur, chlorine and bromine elements in the soil. The small amount of acidic fluids then react with the rocks buried in the soil and formed these highly oxidized coatings.

Trench-digging rover

During its traverse from landing site to Columbia Hills, the rover Spirit dug three trenches, allowing researchers to detect relatively high levels of magnesium sulfate comprising more than 20 percent of the regolith — soil containing pieces of small rocks — within one of the trenches, the Boroughs trench. The tight correlation between magnesium and sulfur indicates an open hydrologic system — these ions had been carried by water to this site and deposited.

Spirit’s fellow rover Opportunity earlier had detected a history of water at another site on Mars, Meridiani planum. This study (by Haskin et al.) covered the investigation of Spirit rover sols (a sol is a Martian day) 1 through 156, with the major discoveries occurring after sol 80. After the findings were confirmed, Spirit traversed to the Columbian hills, where it found more evidence indicating water. The science team is currently planning for sol 551 operation of Spirit rover, which is only 55 meters away from the summit of Columbia Hills.

Spirit was on sol 597 on Sept 6 and on the summit of Husband Hill.

"We will stay on the summit for a few weeks to finish our desired investigations, then go downhill to explore the south inner basin, especially the so-called ’home-plate,’ which could be a feature of older rock or a filled-in crater," Wang said. "We will name a major geo-feature in the basin after Larry."

Wang, Haskin, their WUSTL colleague Raymond E. Arvidson, chair of earth and planetary sciences, and James S. McDonnell Distinguished University Professor, and Bradley Jolliff, Ph.D., research associate professor in earth and planetary sciences, and more than two dozen collaborators from numerous institutions, reported their findings in the July 7, 2005 issue of Nature magazine (Larry A. Haskin et al. Nature 436, 66-69 (7 July 2005) doi:10.1038/nature03640). The paper was the last one that lead author Haskin, a highly regarded NASA veteran and former chair of earth and planetary sciences at WUSTL, submitted before his death on March 24, 2005.

Buried again and again

"We looked closely at the multiple layers on top of the rock Mazatzal because it had a very different geochemistry and mineralogy," said Wang. "This told us that the rock had been buried in the soil and exposed and then buried again several times over the history. There are chemical changes during the burial times and those changes show that the soil had been involved with water.

"The telltale thing was a higher proportion of hematite in the coatings. We hadn’t seen that in any previous Gusev rocks. Also, we saw very high chlorine in the coating and very high bromine levels inside the rock. The separation of the sulfur and chlorine tells us that the deposition of chlorine is affected by water."

While the multilayer coatings on rock Mazatzal indicates a temporal occurrence of low quantity water associated with freezing and melting of water, the sulfate deposition at trench sites indicates the involvement of a large body of water.

"We examined the regolith at different depths within the Big Hole and the Boroughs trenches and saw an extremely tight correlation between magnesium and sulfur, which was not observed previously," Wang said. "This tells us that magnesium sulfate formed in these trench regoliths. The increasing bromine concentration and the separation of chlorine from sulfur also suggests the action of water. We don’t know exactly how much water is combined with that. The fact that the magnesium sulfate is more than 20 percent of the examined regolith sample says that the magnesium and sulfur were carried by water to this area from another place, and then deposited as magnesium sulfate. A certain amount of water would be needed to accomplish that action."

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>